
py2eviews: Python + EViews
WHITEPAPER AS OF 7/10/2024

Introduction
The purpose of the py2eviews package is to make it easier for EViews and Python to talk to each other,

so Python programmers can use the econometric engine of EViews directly from Python. The Python

package we’ve written uses COM to transfer data between Python and EViews. (For more information

on COM and EViews, take a look at our whitepaper on the subject.) This package is only available for

Windows users as it requires EViews to be properly installed and licensed on the same machine.

Note: Our older 'pyeviews' package is no longer being updated. This new package supersedes that older

package and is more compatible with the latest versions of pandas. For users of the older package,

please install and use py2eviews instead.

Example
Here’s a simple example going from Python to EViews. We’re going to use the popular Chow-Lin

interpolation routine in EViews using data created in Python. Chow-Lin interpolation is a regression-

based technique to transform low-frequency data (in our example, annual) into higher-frequency data

(in our example, quarterly). It has the ability to use a higher-frequency series as a pattern for the

interpolated series to follow. The quarterly interpolated series is chosen to match the annual

benchmark series in one of four ways: first (the first quarter value of the interpolated series matches the

annual series), last (same, but for the fourth quarter value), sum (the sum of the first through fourth

quarters matches the annual series), and average (the average of the first through fourth quarters

matches the annual series).

We’re going to create two series in Python using the time series functionality of the pandas package,

transfer it to EViews, perform Chow-Lin interpolation on our series, and bring it back into Python. The

data are taken from Bloem et al in an example originally meant for Denton interpolation.

Installing py2eviews package
In your python environment, install the py2eviews package by running:

pip install py2eviews

If you’re running python under a Miniforge or Anaconda distribution, run this instead:

conda install eviews::py2eviews

Preparing the data
In Python, create two time series using pandas. We’ll call the annual series “benchmark” and the

quarterly series “indicator”:

import numpy as np

import pandas as pa

http://www.eviews.com/download/whitepapers/EViews_COM_Automation.pdf

dtsa = pa.date_range('1998', periods = 3, freq = 'A')

benchmark = pa.Series([4000.,4161.4,np.nan], index=dtsa, name =
'benchmark')

dtsq = pa.date_range('1998q1', periods = 12, freq = 'Q')

indicator = pa.Series([98.2, 100.8, 102.2, 100.8, 99., 101.6, 102.7,
101.5, 100.5, 103., 103.5, 101.5], index = dtsq, name = 'indicator')

Pushing data to EViews
Import the py2eviews package and get an EViews app object by calling GetEViewsApp. Calling this

method with instance='new' will result in launching a new instance of EViews. Setting

showwindow=True will make the EViews application window visible (by default this is hidden).

import py2eviews as evp

eviewsapp = evp.GetEViewsApp(instance='new', showwindow=True)

Then call the PutPythonAsWF function to push both benchmark & indicator to EViews (into a single

new workfile, but with two different pages):

evp.PutPythonAsWF(benchmark, app=eviewsapp)

evp.PutPythonAsWF(indicator, app=eviewsapp, newwf=False)

Behind the scenes, PutPythonAsWF will detect the DatetimeIndex of your pandas object (if you have
one) and adjust it to match EViews' date requirements. Since EViews assigns dates to be the beginning
of a given period depending on the frequency, this can lead to misalignment issues and unexpected
results when calculations are performed. For example, a DatetimeIndex with an annual 'YE' frequency
and a date of 2000-12-31 will be assigned an internal EViews date of 2000-12-01. In this case, the
PutPythonAsWF method will adjust the date to 2000-01-01 before pushing it to EViews.

Running EViews commands:
EViews commands can also be run using the Run method. We’ll use it here to rename the two page

names that were just created.

evp.Run('pageselect Untitled', app=eviewsapp)

evp.Run('pagerename Untitled annual', app=eviewsapp)

evp.Run('pageselect Untitled1', app=eviewsapp)

evp.Run('pagerename Untitled1 quarterly', app=eviewsapp)

Perform the Chowlin interpolcation
We’ll run the EViews “copy” command to copy the benchmark series (in the annual page) to a new
object on the quarterly page, while using the indicator series already in the quarterly page as the high-
frequency indicator and matching the sum of the benchmarked series for each year (four quarters) with
the matching annual value of the benchmark series:

evp.Run('copy(rho=.7, c=chowlins, overwrite) annual\\benchmark
quarterly\\benchmarked @indicator indicator', app=eviewsapp)

Pulling data from EViews
Now that EViews has calculated the new benchmark quarterly series, we’ll bring it into Python using the

GetWFAsPython method:

benchmarked = evp.GetWFAsPython(app=eviewsapp, pagename= 'quarterly',
namefilter= 'benchmarked ')

print benchmarked

 BENCHMARKED

 1998-01-01 867.421429

 1998-04-01 1017.292857

 1998-07-01 1097.992857

 1998-10-01 1017.292857

 1999-01-01 913.535714

 1999-04-01 1063.407143

 1999-07-01 1126.814286

 1999-10-01 1057.642857

 2000-01-01 1000.000000

 2000-04-01 1144.107143

 2000-07-01 1172.928571

2000-10-011057.642857

Cleaning up
Now that we’re done using the EViews application, we can release it by hiding the application window

and then setting our local eviewsapp variable to None. A final call to Cleanup will release any variables

used by py2eviews:

eviewsapp.Hide()

eviewsapp = None

evp.Cleanup()

Note: If you happen to set eviewsapp = None while the EViews application window is still visible,

EViews will continue to run. EViews will only shutdown automatically if it is not visible. If you do

happen to leave EViews open at the end of your program, you’ll have to manually quit EViews.

Plotting the new quarterly benchmark series against the indicator series
As an optional step, we can plot everything to see how the interpolated series follows the indicator

series (this requires you have the matplotlib package installed):

load the matplotlib package to plot

import matplotlib.pyplot as plt

reindex the benchmarked series to the end of the quarter so the dates

match those of the indicator series

benchmarked_reindexed = pa.Series(benchmarked.values.flatten(), index =

benchmarked.index + pa.DateOffset(months = 3, days = -1))

plot

fig, ax1 = plt.subplots()

plt.xticks(rotation=70)

ax1.plot(benchmarked_reindexed, 'b-', label='benchmarked')

multiply the indicator series by 10 to put it on the same scale as
the benchmarked series

ax1.plot(indicator*10, 'b--', label='indicator*10')

ax1.set_xlabel('dates')

ax1.set_ylabel('indicator & interpolated values', color='b')

ax1.xaxis.grid(True)

for tl in ax1.get_yticklabels():

 tl.set_color('b')

plt.legend(loc='lower right')

ax2 = ax1.twinx()

ax2.set_ylim([3975, 4180])

ax2.plot(benchmark, 'ro', label='benchmark')

ax2.set_ylabel('benchmark', color='r')

for tl in ax2.get_yticklabels():

 tl.set_color('r')

plt.legend(loc='upper left')

plt.title("Chow-Lin interpolation: \nannual sum of benchmarked =
benchmark", fontsize=14)

plt.show()

References
Bloem, A.M, Dippelsman, R.J. and Maehle, N.O. 2001 Quarterly National

Accounts Manual–Concepts, Data Sources, and Compilation.

IMF. http://www.imf.org/external/pubs/ft/qna/2000/Textbook/index.htm

http://www.imf.org/external/pubs/ft/qna/2000/Textbook/index.htm

List of Functions
Public:

py2eviews.GetEViewsApp(version='EViews.Manager', instance='either', showwindow=False)

 Define a custom EViews COM application object with specified options.

 Parameters:

version: {‘EViews.Manager’, ‘EViews.Manager.14’, ‘EViews.Manager.13’,
‘EViews.Manager.12’}, optional

Select the version of EViews to be used. ‘EViews.Manager’ will use the last
registered version of EViews, ‘EViews.Manager.14’ will explicitly use version 14,
etc.

 instance: {‘new’, ‘either’, ‘existing’}, optional

The instance type for the EViews COM application. ‘new’ opens a new EVIews
application, ‘either’ uses an existing application, or, if none exists, opens a new
one, and ‘existing’ uses an existing application.

 showwindow: bool, optional

 Display the EViews window.

 Returns:

 out: EViews COM application

 A user-defined COM application object.

py2eviews.PutPythonAsWF(object, app=None, newwf=True)

Determine the type of object and push into EViews with specified options. Calls

_BuildFromPython or _BuildFromPandas.

Parameters:

object: pandas DataFrame, Series, MultiIndex, DatetimeIndex, or RangeIndex; list, dict,

or numpy array

 The Python or pandas object to be pushed into EViews.

 app: EViews COM application, optional

 COM application object

 newwf: bool, optional

If False, creates a new page in an already existing workfile or a new workfile if

none exists.

Returns:

out: EViews series, panel, or an empty workfile with the appropriate Range set (for a
pandas Index)

Pandas Series and DataFrame attributes are automatically copied into EViews
series attributes.

py2eviews.GetWFAsPython(app=None, wfname='', pagename ='', namefilter='*')

 Pull data from EViews into Python with specified options.

 Parameters:

 app: EViews COM application, optional

 A user-defined COM application object.

 wfname: string, optional

Name of the EViews workfile to pull data from. Must be the full path name. If
no workfile is specified the currently open workfile will be used.

 pagename: string, optional

 Name of the EViews workfile page to be created.

 namefilter: string, optional

 Base name for series to be pulled.

 Returns:

 out: pandas DataFrame

A pandas DataFrame containing the series objects pulled from EViews. EViews
series attributes are automatically copied into the attributes of the DataFrame.

py2eviews.Run(command, app=None)

 Run an EViews command directly from Python.

 Parameters:

 command: string

 The full command to be passed to EViews.

 app: EViews COM application, optional

 A user-defined COM application object.

py2eviews.Get(objname, app=None)

 Return single data values from an EViews workfile.

 Parameters:

 objname: string

A single piece of EViews data (e.g. a scalar value or string value such as
“@pagename.”

 app: EViews COM application, optional

 A user-defined COM application object.

 Returns:

 out: string

py2eviews.Cleanup(app=None)

Clear the memory allocated to the COM process. This is not done automatically in interactive
mode.

Parameters:

app: EViews COM application, optional

COM application object with memory to be released. If no app is specified the

global app is substituted.

Private:

py2eviews._BuildFromPython(objectlength, newwf=True)

 Creates the CREATE or PAGECREATE command for a new compatible EViews workfile.

 Parameters:

 objectlength: integer

The length of the Python object (list, dict, or numpy array) to be pushed to
EViews.

 newwf: bool, optional

If False, creates a new page in an already existing workfile or a new workfile if

none exists.

 Returns:

 out: string

 A string with the create command for a workfile or page.

py2eviews._BuildFromPandas(object, newwf=True)

 Creates the CREATE or PAGECREATE command for a new compatible EViews workfile.

 Parameters:

 object: pandas object

The Python pandas object (series, dataframe, panel, or DatetimeIndex) to be
pushed to EViews.

 newwf: bool, optional

If False, creates a new page in an already existing workfile or a new workfile if

none exists.

 Returns:

 out: string

 A string with the create command for a workfile or page.

py2eviews._CheckReservedNames(names)

Check that none of the data structure names being pushed to EViews are the reserved names
“c” or “resid.”

Parameters:

 names: list of object names

py2eviews._GetApp(app=None)

Determine the use of either the user-defined EViews COM application object or the global

application object.

Parameters:

 app: EViews COM application, optional

 COM application object

Returns:

 app: EViews COM application

 COM application object

Frequency conversions

Python pandas frequency EViews frequency

AS, A, YE, YS, Y, BAS, BA * A
QS, Q, BQS, BQ Q
MS, M, BMS, BM, CBMS, CBM M
W W
D D7
B D5
C D(day begin, day end)
H, BH * H(day begin-day end, time min-time max)
T, min * Min(day begin-day end, time min-time max)
S * Sec(day begin-day end, time min-time max)
L, ms, U, us, N Not supported

* = Includes custom frequencies (2A, 6H, 5min, 30S, etc). See EViews documentation for full list.

