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Overview

The Bayesian model averaging (BMA) technique addresses the fact that inference
using a regression model is typically conducted without accounting for variable selec-
tion carried out prior to estimating the model. Ignoring the uncertainty associated
with variable selection may yield misleading inference.

BMA approaches the variable selection problem by averaging quantitites of interest
over all possible models. BMA estimates the unknown quantities of interest under
each competing model (with different sets of explanatory variables), and then com-
putes the weighted average of the quantities. The weights are based on a Bayesian
estimate of how likely it is that the candidate model is the “correct” model.

This EViews package provides a front end to the R packages for conducting BMA.1

The EViews package produces the posterior means and standard deviations of coeffi-
cients of interest, along with the posterior probabilities (in %) of the variables being
in the model.

The package has two add-ins: the bma add-in can be applied to linear or generalized
linear models, and the bmamlogit add-in is designed for multinomial logit models.
These add-ins require R and the BMA and/or mlogitBMA packages.

1The R version of BMA (written by Adrian Raftery, Jennifer Hoeting, Chris Volin-
sky, Ian Painter, and Ka Yee Yeung) and mlogitBMA (written by Hana Sevcikova and
Adrian Raftery) are available at http://cran.r-project.org/web/packages/BMA/index.html and
http://cran.r-project.org/web/packages/mlogitBMA/index.html, respectively.
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Bayesian Model Averaging

Suppose δ is a quantity of interest. Then the BMA posterior distribution of δ given
the data D is given by

Pr(δ|D) =
K∑
k=1

Pr(δ|Mk, D) Pr(Mk|D). (1)

which is a weighted average of the posterior distributions Pr(δ|Mk, D) under each
model Mk (k = 1, . . . , K), where the weights are the posterior model probabilities
Pr(Mk|D) that Mk is the “correct” model. It is worth noting that BMA requires
posterior model probabilities for use as weights.

We are interested in the posterior means and variances, E[δ|Mk, D] and Var[δ|Mk, D].
Using Equation (1), we may derive expressions for the posterior mean and variance:

E[δ|D] =

∫
δ Pr(δ|D)dδ

=
K∑
k=1

(∫
δ Pr(δ|Mk, D)dδ

)
Pr(Mk|D)

=
K∑
k=1

E[δ|Mk, D] Pr(Mk|D)

Var[δ|D] =
K∑
k=1

(Var[δ|Mk, D] + E[δ|D]2)− E[δ|D]2.

where E[δ|Mk, D] and Var[δ|Mk, D] are the posterior mean and variance which are
derived from the model Mk by the Bayes rule.

The posterior model probability for model Mk is

Pr(Mk|D) =
Pr(D|Mk) Pr(Mk)∑K
l=1 Pr(D|Ml) Pr(Ml)

(2)

where

Pr(D|Mk) =

∫
L(D|θk,Mk) Pr(θk|Mk)dθk,

is the marginal likelihood under model Mk, θk is the vector of parameters under
model Mk, Pr(θk|Mk) is the prior density of θk under model Mk, and L(D|θk,Mk) is
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the standard likelihood, and Pr(Mk) is the prior probability that Mk is the correct
model.

It is worth noting that the BMA package produces posterior model probabilities and
associated Bayesian information criteria (BIC) values. Both posterior model prob-
abilities and BICs may be used to find a “preferred” model out of the competing
models; given a set of competing models for the data, the preferred model is the one
with the lowest BIC and/or the highest posterior model probability.

However, it can be shown that averaging over all of the models, as measured by a
logarithmic score rule, can provide better predictive ability than using a single model.
Given that averaging over candidate models may be thought of as a “soft” form of
model selection, BMA is particularly attractive when we wish avoid choosing a par-
ticular model.

One of the stumbling blocks in implementing BMA is to incorporate every possible
uncertainty into the model because the number of models can be enormous. For
instance, if we have 10 explanatory variables in a linear model setting, BMA needs
to combine 210 = 1024 different models {M1, . . . ,M1024}. A solution to this problem
involves applying the Occam’s window algorithm which averages only over a set of
likely models. Denote a set of likely models and unlikely models to be R and Q, then
the Occam’s algorithm:

1. Identifies a largest marginal score: Pr(Mk|D) = argmaxj Pr(Mk|D).

2. Given the value C, excludes a set of modelsQ1 = {Mj; Pr(Mk|D)/Pr(Mj|D)} ≥
C and get the likely models R1 = {Mj;Mj /∈ Q1}.

3. For Mj ∈ R1, excludes a set of models Q2 = {Mj;Ml ⊂Mj,Ml,Mj ∈ R1} and
derive a set of likely models R2 = {Mj;Mj ∈ R1,Mj ∈ Q2}.

Thus Equation (1) is replaced by

Pr(δ|D) =

∑
Mk∈R2

Pr(δ|Mk, D) Pr(Mk|D) Pr(Mk)∑
Mk∈R2

Pr(Mk|D) Pr(Mk)

and therefore the number of models in the sum can be greatly reduced.
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BMA for (Generalized) Linear models

Package Name: bma
Default Proc Name: bma
Default Menu Text: : BMA for GLM/LM

Dialog: Upon running the add-in from the menus, a dialog will appear:

In the first box, you should specify the dependent variable followed by list of regres-
sors. Please note that an explicit equation specification (e.g. y=c(1)+c(2)*x) is not
allowed in this box.

The “Method” combo box lets you select the regression model of interest - particu-
larly, linear model (LM) or generalized linear model (GLM).

The “A number for excluding models in Ocaam’s window” box lets you specify the
value C in the Occam’s algorithm (Step 2). The number of models in the Occam’s
algorithm increases as the value C decreases (the default value for C is 20).

When you choose the GLM regression, the “Family” and “Link” combos let you spec-
ify the family distribution of errors and the link function. Table 1 shows available
options to users. Since the variance function is determined by the family, all families
other than the quasi family do not require the variance specification. When the quasi
family is chosen, the ”Variance” box lets you specify the variance function.
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Table 1: Family and Link functions
Family Link Variance
Normal identity Normal
Binomial logit, probit and cloglog Binomial
Poission log, identity and sqrt Poisson
Gamma inverse, identity and log Gamma
Inverse-Gaussian 1/µ2 Inverse-Gaussian
Quasi User-specified Constant, µ(1− µ), µ, µ2, µ3

Note: The quasi family accepts the logit, probit, cloglog, identity, inverse, log, 1/µ2

and sqrt links.

Command line:

Syntax : bma(options) a list of variables

Options Explanation
method=arg Linear models (LM, default), Generalized linear models (GLM)
family=arg Distribution family: Normal (NORMAL), Binomial (BINOMIAL),

Poisson (POISSON), Gamma (GAMMA), Inverse Gaussian (IGAUSS),
Quasi (QUASI)

link=arg Link function: Identity (IDENTITY), Log (LOG), Logit (LOGIT),
Probit (PROBIT), Complementary Log-log (CLOGLOG),
Inverse (INVERSE), Squared-root (SQRT), 1/µ2 (BOX)

var=arg Variance for the quasi family: Constant (CON), µ(1− µ) (BIN),
µ (MU), µ2 (MU2), µ3 (MU3)

smpl=arg Specify the sample

Example: To illustrate how the add-in can be used for Bayesian model averaging, we
use the “401kjae” dataset (see User Guide II, “Generalized Linear Models” on page
313); this is available in your EViews installation directory (Usually, C:\Program
Files\EViews 7\Example Files\EV7 Manual Data\Chapter 27 - Generalized Linear
Models).

bma(method=GLM, family=BINOMIAL, link=LOGIT) mrate log(totemp)
log(totemp)2 age age2 sole
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will employ a GLM specification using a binomial proportion family and logit link
and proceed the BMA regression. It will create an EViews spool (see Figure 1) called
bma, with two tables, bma and models ; the first table contains the averaged posterior
means and standard deviations and posterior probabilities that the variable is in the
model (in %). The second table contains the posterior values under each model, along
with BICs and posterior model probabilities.

Figure 1: 401K tax advantaged savings plan participation rates (PRATE)

From the “bma” table, it is clear that the employer matching contribution rate
(MRATE), the log of total employment (LOG(TOTEMPT), LOG(TOTEMPT)2),
plan age (AGE), and the constant (C) have high posterior probabilities of being in
the model, while AGE2 and a binary indicator for whether the plan is the only pen-
sion plan offered by the plan sponsor (SOLE) have low posterior probabilities. The
SOLE variable, especially, has 0 probability to be in the model and so a great deal of
uncertainty about whether it should be included remains.

The “models” table shows that the models favored by BMA do not include the AGE2

variable.
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BMA for Multinomial Logit models

Package Name: bma
Default Proc Name: bmamlogit
Default Menu Text: : BMA for Multinomial logit models

Description: When analyzing a categorical response, multinomial logistic (MNL)
regression is one often-used strategy. Given that N individuals make one choice
among J alternatives, the probability of individual i choosing alternative j is

Pij =
exp(Vij)∑J
j=1 exp(Vij)

, i = 1, . . . , N, j = 1, . . . , J

Vij = cj + αjXi + βjWij

where cj is the alternative-specific intercepts, {Xi} is a set of individual-specific ex-
planatory variables and {Wij} is a set of alternative-specific explanatory variables.

The choice for one alternative is modelized based on the differences between alter-
natives, and so we set a base alternative and treat the remaining alternatives as
differences from the base. For example, if the base alternative is 1 (i.e. Vi1 = 0 for all
i), then we will be interested in the difference between the satisfaction of two different
alternatives j and 1,

Vij = cj + αjXi + βj(Wij −Wi1) j = 2, . . . , J.

Dialog: Upon running the add-in from the menus, a dialog will appear (see Figure 2).

The first box in the dialog lets you specify the categorically distributed response vari-
able which is the choice made by the N individuals. The following two boxes let you
specify the individual-specific regressors Xi and the alternative-specific regressors Wij.

When you would like to set the base alternative (default is 1), you need to specify
the index of the alternative of interest in the “Index of base altenative” box. Since
the names of the alternatives will be automatically determined by R based on the
structure of the response variable, you should be careful to choose the index of the
base alternative (e.g. if the names of the alternatives are assigned to be (1 3 2) by R,
then the index “2” denotes the alternative 3).
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Figure 2: Dialog of BMA for multinomial logit

The “Include alternative-specific intercepts” checkbox lets you decide whether alter-
native specific constants cj should be included in the selected models.

The “Estimation method” combo asks you to choose the estimation method in the
model averaging procedure. It is worth noting that the Begg and Gray approxima-
tion (Begg and Gray, 1984) provides a close approximation to maximum-likelihood
estimation of the full MNL, and is particularly attractive due to its computational
efficiency when the response variable has multiclass classification (Yeung et al., 2005).

Command line:

Syntax : bmamlogit(options) response individual specific var @ alternative specific var

Options :

Explanation
base=int The index of the base alternative (The default choice is 1)
mnl Perform maximum likelihood estimation

(The default method is the Begg and Gray approximation)
exc Exclude alternative-specific constants
smpl=arg Specify the sample
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Example: By using the Boston HMDA dataset2, we will illustrate how the add-
in may be used for Bayesian model averaging for multinomial logit models. In the
following command,

bmamlogit s7 s11 s13 s15 s17 @ s42

the variable s7 is a dependent variable, s11 -s17 are individual specific variables and
s42 is an alternative specific variable. It will create an EViews spool (“bmamlogit”)
which contains three tables, multinomial res, bma, and models.

Figure 3 shows the multinomial res table which displays information on the categor-
ical dependent variable s7. Note that the table contains the names (i.e. 1 3 2) and
frequencies (i.e. 2025 285 70) of the alternatives, along with information on the base
alternative selection.

Figure 3: multinomial res

Figure 4 displays the main estimation results; the BMA posterior means, standard
deviations and posterior probabilities (see Table 4(a)), and the posterior values under
each model, along with BICs and posterior model probabilities (see Table 4(b)). It
is shown that the individual-specific variable s13, the alternative-specific constants
s42 3 and s42 2, and the constant C have high posterior probabilities of being in the
model, while the remaining individual-specific variables s11, s15, and s42 have low
posterior probabilities. Especially, the probailities that s42 2 and s15 to be in the
model are 0 so that uncertainty about whether they should be included still remains.
The two variables s11 and s17 have relatively noticeable probabilities, however, the
BMA favored Model 1 does not have these variables.

2Available at http://wps.aw.com/wps/media/objects/3254/3332253/datasets2e/datasets/hmda.docx
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(a) bma

(b) models

Figure 4: bma and models
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