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Abstract

This paper explains how to perform univariate spectral analysis using an EViews addin. Sug-
gestions to estimate the spectrum are explained across the article, specically for economic variables.
All the add-in capabilities were applied using data of the Industrial production index, the exchange
rate Euro/Dollar and the Chicago Board Options Exchange S&P 100 volatility index (VXO). Also,
some tests for detecting periodic components, white noise and Gaussian white noise are included
in the add-in. A procedure called Signicant Pass Filter (SPF) for extracting deterministic peri-
odic components is showed; it has the advantage of eliminating the possibility of spurious cycles.
Finally, a programing code to perform Dynamic Fourier Analysis (DFA) and estimate stochastic
cycles using EViews is explained.
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1 Introduction

The analysis of time series is usually limited to the time domain analysis, ignoring the frequency
domain perspective. Although both contain the same information, they differ in terms of presentation
and interpretation e.g., is straightforward to find a deterministic wave that explain the series using
spectral analysis, while it is not with the analysis in the time domain, therefore, they should be seen
as complementary tools rather than competitive, [17, 8]. The purpose of this paper is to explain how
to perform spectral analysis using EViews [12], from the theoretical and empirical point of view.

EViews is a statistical software for econometric and statistical analysis, it contains an easy to
use point-and-clicking and a command line interface, powerful analytic tools and high quality graphs.
Users also can write their own programs using the programing interface, for more details see [11]. This
software works with the creation of objects i.e., to access the different statistical tools that EViews
offers one must create a new EViews object in a workfile e.g., to apply a unit root test one must create
a series object.

Since their 7.1 version EViews provides an add-in infrastructure, which allows the user to add
new features that are indistinguishable from built-in ones i.e., new menu entries for point-and-clicking
interaction or new command lines can be created by users. An EViews add-in will be explained across
this paper [14].

The paper contain five sections including this introduction, sections 2 and 3 briefly mention the
spectral estimators, their properties and suggestions for their estimate, in section 4 some spectral
statistical test are explained and section 5 shows how to use the add-in with data of the industrial
production index, the Chicago Board Options Exchange S&P 100 volatility index (VXO) and the
exchange rate Euro/Dollar.
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2 Discrete estimation

A second order stationary time series xt = x1, ..., xn can be written as a linear combination of or-
thogonal trigonometric functions1, also known as the Fourier representation of finite sequences. If the
angular frequency and n are known then:

xt =

n/2∑
k=0

[akcos(ωkt) + bksin(ωkt)] (1)

For t = 1, 2, ..., n. Where ωk = 2πk/n and k = 0, 1, ..., n/2 are known as the Fourier frequencies,
ak and bk as Fourier coefficients, see [9, 13, 17]. Equivalently the spectrum could be written as the
Fourier representation of γk as:

f(ω) =
1

2π

∞∑
k=−∞

γke
−iwk (2)

Where γk is the absolutely summable autocovariance function i.e.,
∑∞
k=−∞ | γk |<∞.

There are two main reasons for choosing the Fourier frequencies. First they allow the orthogonality
between the trigonometric functions and the independence of the Fourier coefficients, which is of great
convenience for hypothesis testing as will be seen in section 4. This independence holds asymptotically
even with non-normality of xt.

And second, as xt is sampled at discrete points in time their spectral representation extends only
to the interval [−π, π], because we cannot distinguish between a frequency inside this interval to one
outside it i.e., the components with frequencies ω + 2π, ω − 2π, ω + 4π, ω − 4π, ... will appear to have
frequency ω. Figure 1 shows two cycles generated with the cosine function and with angular frequencies
ω = πt

2 and ω = 3πt
2 , the first being inside the interval and the second outside, empirically we only

observe the coincidence points showed by the blue vertical lines, therefore the frequency ω = 3πt
2 is

said to be an “alias” of ω = πt
2 . See [13].

Figure 1: Aliasing.

This aliasing affects the ability to estimate the high frequency components in the spectrum, thus we
miss detailed information of the rapidly oscillating component, to mitigate this effect the observations
should be sampled with high periodicity.

There are three ways of estimating the spectrum of a time series, these are: the periodogram, the
sample spectrum and the rational spectra. Since EViews already handles rational spectra this will be
omitted, the periodogram and the sample spectrum will be explained below. It is worth noting that
non of this methods are uniformly superior than the others, nevertheless if the population spectrum
is discrete the rational spectra would not be the best choice, [13].

1For a brief introduction of the parameters in a trigonometric function see the appendix ( on page 22)
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2.1 Periodogram

The periodogram is a graph of the frequency in the abscissa axis2 and the amplitude in the ordinates3.
The estimators of the Fourier coefficients, following the Fourier representation in (1) are given by:

âk =
1

n

n∑
t=1

xtcos(ωkt) (3)

âk =
2

n

n∑
t=1

xtcos(ωkt) (4)

b̂k =
2

n

n∑
t=1

xtsin(ωkt) (5)

Where (3) is used for k = 0 and k = n
2 if the number of observations n is even4. The expressions

(4) and (5) are used for k = 1, 2, ..., (n− 1)/2. The frequency ωk is given by the Fourier frequencies.

2.2 Sample spectrum

The sample spectrum is based on the equation (2)5, where their estimator is given by:

f̂(ω) =
1

2π

n−1∑
k=−(n−1)

γ̂ke
−iwk

f̂(ω) =
1

2π

[
γ̂0 + 2

n−1∑
k=1

γ̂kcos(ωk)

]
(6)

The add-in programing of the discrete spectrum is based on the periodogram. It can be easily
shown that the periodogram is related to the sample spectrum as f̂(ω) = 1

4π Î(ωk), see [17].
The periodogram and the sample spectrum are asymptotically unbiased estimators of the spec-

trum, nevertheless they are inconsistent in the sense that their variance does not decrease as the
number of observations increase. This happens because the covariance between two different ordinates
namely cov(Î(ω1), Î(ω2)) decreases as n increases, therefore the ordinates are independent and both,
the periodogram and sample spectrum have an erratic form, [13].

3 Continuous estimate

If we know a priori that the spectrum is a continuous and smooth function then, estimating it based
on the periodogram and the sample spectrum would not be the best approach. Nevertheless, using
economic data one does not have this information, therefore the estimation must be performed using
the discrete estimators and if the possibility of a continuous spectrum arises estimate it in a second
step using continuous estimators.

2In the add-in the frequency is presented as cycles per time unit, f in the appendix notation. It is also common to
assign to this axis the angular frequency ω or k.

3The amplitude is given by I(ωk) =

√
â2
k

+ b̂2
k

for the kth frequency where âk and b̂k are the Fourier coefficients ,

see the appendix for details.
4In the add-in coefficient a0 or mean is omitted, due to a distortion generated in the spectral density estimate based

on the periodogram, see [17].
5Note that the autocovariance function could be recovered as: γk =

´ π
−π f(ω)eiwkdω. Therefore for k = 0 the variance

is given by γ0 =
´ π
−π f(ω)dω, whereby the spectrum could be interpreted as the decomposition of the variance of the

process or as the contribution of the component with frequency (ω, ω + dω) to the variance of the process.
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The estimator of the autocovariance function γ̂τ = 1
n

∑n−|τ |
t=1 (xt − x)(xt+|τ | − x) is asymptotically

unbiased and consistent, hence we may expect that a linear combination of this, as the sample spectrum,
would be a consistent estimator of the same linear combination, [13]. However, as mentioned it is not,
the reason is that the sample spectrum contains autocovariances for large τ , which is a poor estimator
of the true autocovariance function since it is based in a small number of observations.

Thus an option of reducing the variance of the spectrum and obtaining consistency is to truncate
the autocovariance function, therefore the expression in (6) will be given by:

f̂w(ω) =
1

2π

M∑
k=−M

γ̂kcos(ωk) (7)

Where M is the truncation point.
This will reduce the variance but also will increase the bias. Therefore a balance must be achieved,

in general if we make M depends on N in such a way that M → ∞ and n → ∞, but M changes
sufficiently slowly so that M

n → 0 then the variance and the bias will tend to zero asymptotically. This
estimator can be seen as a particular case of the more general form:

f̂w(ωk) =
1

2π

n−1∑
k=−(n−1)

λ(k)γ̂kcos(wk) (8)

Where for the truncated autocovariance function λ(k) = 1 for | k |≤ M and 0 otherwise. The
function λ(s) is known as the lag window and as can be seen it is applied to the sample spectrum.
On the other hand smoothing could be performed in the frequency domain i.e., applied directly to the
periodogram as:

f̂w(ωk) =

mn∑
j=−mn

Wn(ωj)Î(ωk − ωj) (9)

Where mn is a function of the number of observations and Wn(ωj) is known as the spectral window6.

It can be proved that Wn(ω) = 1
2π

∑n−1
k=−(n−1) λ(k)e−ikω, that is, the spectral window is the Fourier

transform of the lag window. Thus truncate the sample spectrum has the same effect than smoothing
the periodogram.

For the add-in the spectrum was smoothed using spectral windows. To present the results it is only
necessary to show the spectrum over the interval [0, π] and since the spectral window contains n points
the periodicity and the symmetric property of the spectrum were used to calculate the spectrum. The
periodicity states that the spectrum has a period of 2π i.e., f(ω) = f(ω+2π) and symmetric states that
f(ω) = f(−ω), see [17]. Therefore from the computational point of view, the spectrum was ordered in
the interval [−π, 2π] to obtain the calculations using the spectral window.

There are different forms of the lag and spectral windows, for a summary of these see [16] and [13].
The add-in has the option of choosing seven spectral windows, these will be showed below.

In table 1 and in table 2 lists spectral and lag windows respectively. Is important to note that not
all the lag windows are of the truncated type e.g., the Daniell and the Bartlett-Priestley, therefore
M in their expression does not correspond to the truncation point, it corresponds to the degree of
smoothing, more details are showed in the next section.

The Hamming and Hann windows are based on the general Tukey window with different parameter
a7, as can be seen these spectral windows are function of the Dirichlet kernel, denoted by DM (ω) and
it is equal to the truncated spectral window8.

6This type of window must have the properties of
∑mn

j=−mn
Wn(ωj) = 1 and limn−→∞

∑mn
j=−mn

W 2
n(ωj) = 0.

7For the Hamming window a = 0.23 and for the Hann a = 0.25.
8In the progmming code the Hamming and Hann spectral windows are calculated replacing the definition of the

Dirichlet kernel, see [17].
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Figure 2: Spectral and lag windows.
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Figure 2: Spectral and lag windows.

Window name Spectral window

Hamming Wn(ω) = 0.23
{
D(ω − π

M
)
}

+ (1− 2 ∗ 0.23)D(ω) + 0.23D(ω + π
M

)

Hann Wn(ω) = 0.25
{
D(ω − π

M
)
}

+ (1− 2 ∗ 0.25)D(ω) + 0.25D(ω + π
M

)

Bartlett Wn(ω) = 1
2πM

{
sin(Mω

2
)/sin(ω

2
)
}2

Parzen Wn(ω) = 3
8πM3

{
sin(Mω

4
)/
[
( 1
2

)sin(ω
2

)
]}{

1− ( 2
3

)sin2(ω
2

)
}

Truncated Wn(ω) = 1
2π

{
sin
[
(M + 1

2
)ω
]
/sin(ω

2
)
}

Daniell Wn(ω) = M
2π

for − π
M
≤ ω ≤ π

M
and 0 otherwise.

Bartlett-Priestley Wn(ω) = 3M
4π

{
1− (Mω

π
)2
}

for | ω |≤ π
M

Table 1: Spectral windows.

Window name Lag window

Hamming λ(k) = 1− 2 ∗ 0.23 + 2 ∗ 0.23cos(πk
M

) for | k |≤M and 0 otherwise

Hann λ(k) = 1− 2 ∗ 0.25 + 2 ∗ 0.25cos(πk
M

) for | k |≤M and 0 otherwise

Bartlett λ(k) = 1− |k|
M

for | k |≤M and λ(k) = 0 for | k |> M

Parzen λ(k) = 1− 6(K
M

)2 + 6(
|k|
M

)3 for | k |≤ M
2

and λ(k) = 2(1− |k|
M

)3 for M
2
≤| k |≤M

Truncated λ(k) = 1 for | k |≤M and λ(k) = 0 for | k |> M

Daniell λ(k) = sin(πk
M

)/(πk
M

)

Bartlett-Priestley λ(k) = 3M2

(πk)2

{
sin(πk

M
)/(πk

M
)− cos(πk

M
)
}

Table 2: Lag windows.

Figure 2 shows the spectral and lag windows in the first and second column, both were calculated
using M = 20.
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The choice of the window is as important as the choice of the truncation point. It could be proved
that the variance spectrum depends directly on the ratio M

n , the proportion of the used autocovariances
and the bias depend inversely on the truncation point 1

M , therefore as M decreases the variance
decreases but the bias increases. The next sections are dedicated to the procedures of choosing a
truncation point and a spectral window.

3.1 The spectral bandwidth

Before mentioning the methods of choosing a truncation point and a spectral window it is necessary
to introduce the concept of spectral bandwidth. The bandwidth is defined as the distance between the
half-power points ω1 and ω2, where the power or amplitude are defined by f(ω1) = f(ω2) = 1

2f(ω0),
where ω0 is the frequency of the maximum (minimum) value of the spectrum of the narrowest peak
(trough). Figure 3 shows two spectra both with bandwidth Bh = ω2 − ω1.

An interesting feature is the relation of the spectral bandwidth and the rate of decay of the auto-
covariance function, the spectral bandwidth will be small if the autocovariance function decays slowly,
and the bandwidth will be large if the the autocovariance decays rapidly

For example, an harmonic process with a single periodic component will have an non-decaying
autocovariance function and a unique sharp peak in their spectrum, therefore their bandwidth will be
small. On the other hand, consider a random white noise process, this will have a rapidly decaying
autocovariance function and a flat spectrum, therefore their bandwidth are said to be infinite.

Figure 3: Spectral bandwidth.

3.2 Chossing a truncation point

The truncation point controls the decay rate of the lag window, or equivalently the width of the
spectral window9. For example, if we generate the Bartlett spectral window for different truncation
points, it can be seen that if the truncation point increases, the spectral window concentrates around
the central frequency (the spectral window width decreases). This is showed in figure 4, were the
window is plotted for truncation points of 10,20 and 30.

9There are many definition of the width of a spectral window, but in general these are inversely related to the
truncation point.
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Figure 4: Bartlett-Bandwidth.

Now consider the population spectrum showed in figure 5, if a small enough truncation point is
chosen so that 2π

M >| ω2 − ω1 | then the two peaks will be merged together. To resolve or separate
the peaks one must choose M sufficiently large so that the width of the spectral window is not greater
than the bandwidth of the narrowest peak of the spectrum. Therefore, to resolve the frequencies of
the spectrum the following condition must be archived width Wn(ω) ≤ Bh, it would be advisable to
leave some margin of safety and choose the width of the spectral window to be somewhat smaller than
the bandwidth.

Another way to see this is that the spectral estimate will be resolved if their ordinates are uncor-
related10, and this happens only if the spectral bandwidth is greater than the width of the spectral
window.

Figure 5: Window bandwidth.

As can be noted, to resolve frequencies it is necessary to have some prior information about the
theoretical spectra, but in economic time series there is a lack of this information. Nevertheless, there
are semi-empirical procedures which can be used, see [13].

• The autocovariance function: as mentioned, there is a relation between the spectral bandwidth
and the rate of decay of the autocovariance (or autocorrelation) function, therefore a suggestion
for choosing the truncation point is the value for which the autocovariance function is close to
zero.

γ̂(τ) ∼ 0, | s |< M (10)

10It is important to note that in the spectral density estimator some correlation between frequencies were introduced
in order minimize variance.
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It should bear in mind that the autocovariance estimator decays more slowly than the theoretical
function, given its autocorrelation, therefore the truncation could be overestimated. Also, if the the
spectrum contains two peaks, one large and wide and other small and narrow, then the small peak will
not be observed in the autocovariance function, hence the selected truncation will lead to an estimate
without the small peak.

• Window closing: this method consists of choosing an arbitrary small truncation point an then
compute a sequence of spectral estimates by closing the window i.e., increasing the truncation
point, the initial estimates will be smooth, the procedure should stop until the smoothing has
been relaxed too far. Another version of this method is to chose arbitrarily three truncation
points one, small, medium and large, say M1,M2 and M3 then try to find and intermediate value
of M that should be chosen.

• M as a fixed proportion of N : this approach is based in that the ratio M
n controls the variance.

This method should take into account the properties of the underlying process.

3.3 Chossing a window

To choose a window there are two criteria that should be taken into account, the non-negativity
property and the variance leakage, these will be explained below.

• Non-negativity: the choose of the window and the truncation point should not alter this property
i.e., f(ω) =| f(ω) |. Table 3 summarize if a window satisfies this.

Window Satisfies non-negativity

Hamming No

Hann No

Barlett Yes

Parzen Yes

Truncated No

Daniell Yes

Bartlett-Priestley Yes

Table 3: Non-Negativity.

• Variance leakage: as can be seen from figure 2 some windows contain subsidiary side lobes,
therefore this will give substantial contribution to the spectral density estimate if some peak
coincides with some side lobe, hence it could introduce some bias. Nevertheless, this side lobes
could be controlled with the truncation parameter, as with the Bartlett window showed in figure
4.

4 Tests

To explain the statistical tests for the spectrum it is necessary to known the sampling properties of
it. If xt ∼ N(0, σ2

x) it can be showed that each Fourier coefficient ak or bk is i.i.d N(0, 2σ2
x), where

the independence property of the Fourier coefficients were used. Therefore, each periodogram ordinate
has a distribution proportional to χ2

2. Note that when n is even I(0) and I(π) has a distribution χ2
1,

see [17]. If xt came from a linear process were its residuals are not necessarily Gaussian but i.i.d then,
the periodogram ordinates will be asymptotically normal by the central limit theorem.
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4.1 Confidence intervals for spectral density

The distribution of the spectral density can be considered as a weighted linear combination of inde-
pendent χ2 variables, if the weights are not uniform then the distribution of the sum is no longer χ2,

nevertheless approximate distributions can be made, this have the form f̂w(ωk) ∼ fw(ωk)χ2
ν

ν were ν are
the equivalent degrees of freedom. In table 4 shows the parameter ν for the different windows used in
the add-in.

Window ν

Hamming 2.5164n/M

Hann 8n/3M

Barlett 1.4n/M

Parzen 3.708614n/M

Truncated n/M

Daniell 2n/M

Bartlett-Priestley 1.4n/M

Table 4: Equivalent degrees of freedom.

Therefore the confidence interval at (1− α)100%11 for fw(ωk) is given by:

νf̂w(ωk)

χ2
α/2,ν

≤ fw(ωk) ≤ νf̂w(ωk)

χ2
1−α/2,ν

(11)

And for the logarithmic transformation of the spectrum12 is given by:

ln
[
f̂w(ωk)

]
+ ln

[
ν

χ2
α/2,ν

]
≤ ln [fw(ωk)] ≤ ln

[
f̂w(ωk)

]
+ ln

[
ν

χ2
1−α/2,ν

]
(12)

4.2 F test

This test is based on the periodogram and its objective is to find a hidden periodic component, with
the hypothesis:

H0 : ak = bk = 0

Ha : ak 6= bk 6= 0

With the statistic13:

F =
(a2
k + b2k)/ν1∑n/2

j=1,j 6=k(a2
j + b2j )/ν2

∼ F (ν1, ν2) (13)

As mentioned the number of degrees of freedom of the periodogram ordinate depends on the tested
frequency and if the number of observations is odd or even. Table 5 summarizes the values of ν1 and
ν2 for n odd, even and different Fourier frequencies.

11The confidence intervals in the add-in are calculated at 95% of confidence.
12The logarithmic transformation is used for two reasons, first as a variance stabilizing technique, bringing the distri-

bution of the statistic closer to normality and for a closer look of the spectrum.
13Neither the numerator or the denominator includes a0.
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n odd n even
k = 1, ..., n2 − 1 - ν1 = 2, ν2 = n− 3
k = 1, ..., n−1

2 ν1 = 2, ν2 = n− 3 -
k = n

2 - ν1 = 1, ν2 = n− 2

Table 5: Degrees of freedom.

For n odd, v1 is always two since the test is not applicable for ωk = 0 (k = 0) and ωk = π (k = n
2 )

and v2 is always n − 3 since a0, ak and bk are excluded from the sum. For n even, v1 can be one as
bn/2 = 0 for ωn/2 = π and two for the same reasons as for n odd; v2 can be n − 3, due to a0, ak and
bk are excluded from the sum and n− 2 considering a0 and an/2 are the only excluded.

4.3 Fisher and Whittle test

The Fisher test is designed to find only one hidden periodic component, and it is also based on the
periodogram. Specifically it tests if the underling process is Gaussian white noise, in the sense that
its maximum ordinate is not significant enough, i.e, H0 : max {I(ωk)} = 0. This test is based on the
following statistic:

T =
max {I(ωk)}∑n/2

k=1 I(ωk)
(14)

Under the null the critical values of the statistic can be calculated as:

P (T > gα) = α ' n

2
(1− gα)

1
n/2−1 (15)

Where gα is the critical value and α is the level of significance, in the add-in the significance is set
at 5%.

The Whittle test extends the Fisher test to the second maximum ordinate of the periodogram, with
the statistic:

T2 =
I(2)(ω(2))∑n/2

k=1 I(ωk)− I(1)(ω(1))
(16)

Where I(i)(ω(i)) is the ith maximum. The procedure can be continued until an insignificant result
is reached, therefore the statistic gives an estimation of the number of periodic components present in
the series. The critical values of the statistic can be calculated as in (15), but n

2 must be replaced by
n
2 − i+ 1 if the ith maximum is being tested.

This test works well if the true frequencies are close to the Fourier frequencies, if there are some
different of the form 2πj

N then the power of the test will be certainly affected14. The power of the T2

test to detect periodic component will be affected if these are of similar amplitudes, e.g., if a process
contains two periodic components with small differences in amplitude then the T2 statistic will be
substantially smaller.

4.4 Normalized integrated spectrum

This test works with the hypothesis that the observations of the process come from a white noise
process. It is based on the normalized integrated spectrum with the following statistic:

14There are two main procedures that could be performed to expand the range of frequencies with the consequence of
losing the independence property, the first is expand the Fourier frequencies to ω = πk

n
for k = 1, ..., n or even ω = πk

2n
for k = 1, ..., 2n and finally secondary analysis, which is basically separate spectral analysis on observation groups, for
details of the procedure and an empirical application see [13, 2].
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Up =

∑p
k=1 I(ωq)∑n/2
k=1 I(ωq)

(17)

Which is plotted against frequency and if the deviations of the statistic from the p
n/2 line do not

exceed ±a
√

2/n the null will not be rejected, where a is set equal to 1.36 for the 95% of confidence.
This test has the advantage that it is intensive from departures of normality, since it is based on the
normalized integrated spectra.

5 Using the series object add-in

The spectral analysis add-in could be used from the point-and-clicking menu or from the command
line. To use the add-in from the menu, or more specifically from a series object, the user has to click
proc → add − ins → spectral analysis, this is showed in figure 6 in window one. In the second
window there are options for choosing a spectral window, an output table with all the data, all the
tests described in section 4, the periodogram components A and B and a logarithmic scale for the
spectrum. Then two more windows will appear, these are used for the significant pass filter which will
be explained below.

To use the add-in from the command line you have to follow the options showed in table 6. The
data showed in the output table and the tests in the signal significant tests are subject to the user
requested options e.g., if the user requests spectral density instead of the periodogram then the output
table will contain spectral density data and the confidence intervals for the spectral density will be
plotted.

Figure 6: Menu.
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series name.spectral(options)
Option Command

Window Periodogram (default)

Hamming

Hann

Bartlett

Parzen

Truncated

Daniell

Bartlett-Priestley

Truncation truncation=number (20 default)

Output table table

Significance test signal t

Periodogram components c

Log scale log

Significance signal test Command option

Criteria for cycle selection criteria=probability or criteria=integer

Non Weighted nw (weighted default)

Individual cycles individual (cycle sum default)

Table 6: Options for command line.

5.1 Some economic time series spectra

In this section some examples using the add-in will be showed, specifically it will be applied to the
industrial production index (IPI), the Chicago Board Options Exchange S&P 100 volatility index
(VXO) and the exchange rate Euro/Dollar with monthly data. These series are showed in figure 7
with their percentage changes.

Figure 7: Time series data. Source: FED, FRED and Bloomberg.

The spectrum will be calculated for the percentage changes for the IPI and the EUR/USD, given
the non-stationarity in mean of the series 15 which makes the autocovariance function not absolutely

15For the IPI the existence of a unit root was tested using the augmented Dikey-Fuller (ADF) test and Perron test
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summable, the routine was called using series name.spectral(periodogram) for each series. Figure 8
shows the periodogram for these. The transformation of the data has an effect on the form of the
spectrum, this can be seen with the transfer function of the transformation, for the percentage change
it is equal to | α(eiω) |2= 2 [1− Cos(ωk)], therefore it preserves the high frequency (short-run) and
eliminates the low frequency (long-run) component, like a high pass filter.

Figure 8: Spectrum of time series data.

The IPI periodogram suggest the presence of five deterministic cycles with frequency 0.17, 0.25,
0.33, 0.42 and 0.5 which correspond to a six, four, tree, two and a half and two monthly cycles, this
can be attributed to seasonality. For the VXO spectrum it does not suggest the presence of a fixed
cycle, instead it suggests the presence of a stochastic cycle or a pseudo-cyclical behavior, like in an
autoregressive moving average (ARMA) model16. For the depreciation it is not clear if a fixed cycle
exists, hence the spectra will be smoothed.

At the top of the spectral estimates there is a measure of precision of the estimation, known as
the signal to noise ratio (SNR), this measure ignores the bias of the estimate and concentrates on the
variance, an estimate with high SNR has more precision in the sense that its standard deviation is
small compared with his mean.

SNR =
E[f̂w(ω)]

var
[
f̂w(ω)

]1/2 (18)

The significance of the spectral components will be now tested using the tests described above,
these are obtained using the command series name.spectral(periodogram,t). In figure 9 can be seen its
results for the F, the Fisher and Whittle and the normalized integrated spectrum tests for the three
series, the first column has the tests for ∆%IPI, the second for the depreciation and the third for the
VXO. For the F test it is plotted the value of the statistical in (13) and their p value, therefore when
the p value is close to zero the null of non-significance of the cycle with the respective frequency (or

with structural break in sample, there are enough evidence to support the existence of a unit root and a structural
break. For the EUR/USD series the ADF test suggest the presence of a unit root. The ADF test was applied using the
algorithm proposed by [5].

16It can be showed that the rational spectra of a ARMA process is of the form f(ω) = σ2

2π
| φp(e

−iw)

θq(e−iw)
| where for an

AR(1) f(ω) = σ2

2π
1

1+φ2−2cosω
, therefore the VXO periodogram suggests a smooth spectra, like in a AR(1) with positive

coefficient, see [17].
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at least close to it) is rejected, for the Fisher and Whittle test is plotted the difference of the statistic
given by (14) and (16) and the critical value gα, hence if the value is positive the null of non-significance
of the cycle (Gaussian white noise) is rejected and for the normalized integrated spectrum is plotted
the statistical given by (17) and the deviation from the mentioned line, if the statistical exceeds one
of the parallel lines the null of white noise is rejected.

Figure 9: Significance signal tests.

The spectra of the depreciation and the VXO will be smoothed using the Bartlett-Priestley window
with a truncation point selected by the autocovariance function method, for the depreciation the
truncation was one i.e., dtc.spectral(Bartlett-Priestley,truncation=1) and for the VXO it was twenty
i.e., VXO.spectral(Bartlett-Priestley), since its default is twenty. The two spectral density estimates
are showed in figure 10.

Figure 10: Spectral density.

As mentioned in the previous section, confidence intervals can be obtained when spectral density
is requested, if the user chooses any of the spectral windows for estimation and the signal significance
test then automatically the add-in will compute the CI, these are showed in figure 11 for the previous
spectra. Note that the punctual estimator is not necessarily placed between the interval estimators,
this occurs because the critical values were obtained from the χ2 distribution.
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Figure 11: IC of spectral density.

5.2 Significant pass filter (SPF)

Usually the filters are applied in the time domain and try to extract a specific component of the series
i.e., the long-run (smooth) or the short-run (rapidly and oscillating) component, their counterparty
in spectral analysis would be the low frequency and high frequency components, respectively. A filter
is said to be low-pass if it extracts the low frequency component17, high-pass if it extracts the high
frequency component and band-pass if the filter imposes a restriction to extract components in a band
of frequencies. Examples of band-pass filters are the Baxter King and Christiano Fitzgerald filters, see
[1] and [4].

The Fourier transform given in (1) can represent any discrete process in a complete way i.e., with
no disturbance term. If these Fourier coefficients are used to forecast the process out of sample then
the forecast will be exactly the same process, since the Fourier transform implies periodicity of the
process. To assume that a economic time series is completely periodic is unreal, nevertheless some
components of it could present this cyclical deterministic behavior, due to seasonality or business
cycles. The purpose of the SPF is to find these deterministic components in all the spectrum, without
imposing band restrictions.

The SPF is based on the form given in (1) were the filtered series is given by:

Ft =

n/2∑
k=0

[Akcos(ωkt) +Bksin(ωkt)] (19)

Where Ak = ak and Bk = bk if the ordinate I(ωk) is statistically significant or significantly large
and if the weighted option is activated, if it is not activated then Ak = 1 and Bk = 1; if the ordinate is
not significant then Ak = 0 and Bk = 0. In the add-in the statistical significance is obtained using the
F test and a maximum level of tolerance for rejecting the null, given by a p value. For the significantly
large criterion the kth maximum ordinates is used e.g., if this criterion is set to two, then the maximum
and the second maximum ordinates will be used.

The filter assumes that if the kth ordinate satisfies the criterion then cycle will have a frequency
ωk of the form of the Fourier frequencies. Therefore it is assumed that the spectrum is discrete.

The SPF will be applied to the economic time series in the previous section using the biggest
ordinate and the significant ordinate criteria i.e., an integer or a probability, for example the ∆%IPI
process could be recovered by the sum of 106 sinusoidal components, which covers all the spectra
(since n = 213) using the command dipi.spectral(periodogram,criteria=106), notice they differ by a
scale parameter which corresponds to the mean of the process, due to the exclusion of the parameters
for k = 0.

17The moving average filter can be considered as low-pass filter, since its transfer function to the spectrum is of the

form | α(eiω) |2=
1(1−cos(mω))
m2(1−cos(ω)) where m is the number of averaged periods.
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Figure 12: Filtered series.

To find only the underlying deterministic cyclical component in a series the user has two op-
tions, one is to find the individual cycle component of each series and add it manually or let the
add-in add them automatically. Figure 12 shows the individual and the sum of the deterministic
component of each series using a significance of 0.05 and weighted cycles, were the command se-
ries name.spectral(periodogram,criteria=0.05,individual) is used to find the individual components and
the individual option is excluded to calculate the sum of these.

It can be seen that the filtered series of the IPI presents a regular cyclical behavior, which can
be attributed to seasonality, hence the SPF could be used as a method of seasonally adjustment
by differencing the original series and the cyclical component. The filtered depreciation contains a
smoother cyclical behavior, due to the relative large amplitudes of the low frequency component.
The filtered series of the VXO index can be considered as a low-pass filter, since the only significant
frequencies in their spectrum are low, therefore the filtered series is a smooth trend. To see exactly
the frequency of the components contained in the filtered series the user can calculate the spectrum of
the filtered series.

The SPF can also be used to estimate trends of integrated processes and used them to eliminate the
non-stationary component e.g., figure 13 shows the observed and estimated trend of the exchange rate,
their difference (observed-trend) and the spectrum of the difference, the trend was calculated using the
SPF with the command eurusd.spectral(periodogram,criteria=0.05). The spectrum of the difference
series is exactly the same as the spectrum of the exchange rate in levels, except for the low-frequency
component which generate the non-stationarity in the series. For the difference between the original
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and the trend series the unit root test ADF was applied, it rejects the presence of unit root.

Figure 13: SPF trend.

The SPF has the advantage of eliminating the possibility of spurious cycles, which can arise due
to linear trasnformations applied to the series with the objective of became it stationary, like differ-
entiation or seasonal differentiation; another common linear transformation is the moving average,
which is performed in several seasonal adjusting methods. This operations can also hide important
attributes of the series, because it changes the relative importance of the cyclical components (gain)
and the position of the series relative to time (phase). Therefore remaining the spectrum unchanged
with stationarity does not generate spurious cycles and does not hide properties of the series, see [9].

The spectrum of an AR(1) with coefficient close to one in the limit tends to f(ω) = σ2

4π
1

1−cosω , hence
the significant frequency is always placed in the low frequency part of the spectrum. As mentioned,
this type of process does not have an absolutely summable autocovariance function, therefore this
procedure should be performed taken this into consideration, since strictly their spectrum does not
exist.

It is important to note that the process could still have some information, that is, being autocorre-
lated after removing the SPF e.g., xt−Ft in an additive way, hence the SPF can be used repeatedly in
this adjusted series if the filtered processes are independent18. For example, after seasonally adjust the
industrial production, ∆%IPI − Ft, in this process still exists information to estimate the SPF, this

iteration can be stopped until a white noise spectrum is reached i.e., a spectrum of the form f(ω) = σ2

2π ,
a flat spectrum.

Another use of the SPF is the use of the deterministic component for forecasting, given the de-
terministic nature of the filtered series this can be extended out of sample, to do this the user only
has to expand the workfile range in EViews with the command pagestruct(end=year:month) and then
calculate the SPF.

5.3 Dynamic Fourier analysis (DFA)

Fourier analysis can be extended beyond the estimation of the deterministic cycles of a second order
stationary series to the estimation of stochastic cycles. Basically this stochastic cycles can be estimated
by allowing the amplitude to vary over time i.e., ak,t and bk,t, this is called DFA, see [15]. [9] developed
a state-space estimation approach of stochastic cycles and a theoretical development of the pseudo-
cyclical behavior described above.

A programming code of the DFA and the application of the SPF using the add-in will be explained,
intuitively the code performs a time rolling estimation of the spectra. In figure 14 is showed the code.

The first line indicates the program to not send messages of calculation to the status line, lines 3
and 4 are inputs parameters of the step and the window, these are the window sample in which the

18It can be proved that the spectrum of the sum of two independent processes is the sum of the two spectra.
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estimation is performed and the step at which the window moves, these numbers must be integers, in
lines 6 to 10 are the series object name in the workfile for the calculation of their DFA, the spectral
window19 , the criteria selection for the dynamic SPF, log scale and the truncation point.

In lines 12 to 16 are defined the number of observations of the series, the position of the first and
last observation of the series regarding the sample workfile, the number of iterations or rolls and a
control variable to count the number of loops. From line 17 to 61 the estimation of the spectrum of
one data window is perfomed, line 17 defines a control variable going from zero to the last possible
complete data window moving with the step defined previously, then is the loop variable, in lines 19
to 21 is the sample for the workfile window, the first and last positions of the window are obtained
transforming the position of the data to the date of the corresponding data, note that the window
remains constant independently of the loop.

Lines 22 to 27 use the add-in to estimate the spectrum of the current sample window. Then, until
line 32 a table called dynamic is created with the size given in brackets, it contains in the first row the
sample page, which corresponds to the start and end of the current window, in the first column the
frequency f is obtained from the output table of the add-in, then the estimated spectrum is placed in
the jth+ 1 row and !loop+1 column for the corresponding frequency and data window.

In lines 33 to 43 the SPF of the current data window is obtained, the first if statement is done to
distinguish between the choosing criteria given by the user i.e., a probability or an integer number of
maximum cycles, then the second if statement is made to locate the estimated filtered data, if this
exists then it is positioned in a cycle vector in the same position that was located originally. Note that
the cycle variable will be overwritten if the step parameter is lower than the data window, which is
necessary to use all the information.

From lines 44 to 57 the output table and the estimated SPF are deleted, this is an important
step since the next loops use the same objects names for the table and the SPF, hence if they were
not removed the next loops could not obtain the information. Then, to line 60 a message is send to
the status line displaying the completed rolling percentage. In line 61 the process is repeated, the
first control variable is augmented by the step amount,the loop variable is increased by one, then the
dynamic table is filled in the next column, the cycle vector is filled with new estimates from the SPF
and the recent table and SPF are deleted until the control variable in the loop reaches its final value.
Finally, the sample workfile is restored and a series object called stochastic cycle is created.

This programming code is applied to ∆%IPI and to the VXO. Unfortunately EViews does not
handles graphs in three dimensions, hence the dynamic spectrum was plotted using Excel, figure 15
shows the results of the DFT and the stochastic cycle using the SPF. For ∆%IPI the input parameters
are showed in figure 14 and for VXO all the parameters were the same, except for the spectral window,
were the Bartlett-Priestley was chosen with a truncation of twenty.

It can be seen that historically ∆%IPI has presented fixed cycles of stable amplitudes at low
frequencies, but decreasing at high frequencies, therefore the short-run cycles have provided relatively
less to the variance of the process. For the VXO the lowest frequency component amplitude presents
more variation, hence a stochastic cycle estimation is suggested.

19This could be any of the following options: Periodogram, Hamming, Hann, Bartlett, Parzen, Truncated, Daniell or
Bartlett-Priestley.
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Figure 14: Dynamic spectrum program
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Figure 15: Dynamic Fourier transform-Stochastic cycle.
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Appendix

The trigonometric function:

y = ρcos(ωt− θ)

Is defined in terms of the amplitude ρ, the angular frequency ω ,the phase angle θ and time t. The
amplitude establishes the maximum and the minimum values of the cycle. The angular frequency can
be written as ω = 2πf , where f is the frequency given in cycles per time unit and 1/f is the duration
of the cycle (or period) given in time unit per cycle. Any of these definitions of frequency serve to
expand or contract y along the horizontal axis.

The phase angle gives the position of the function relative to the horizontal axis, and could be used
to generate a shift of the cycle in radians, also the units of the phase angle could be turned in time
terms i.e., y = ρcos(t− ξ) where ξ = θ/ω, since the function is a deterministic wave the same shift can
be made by adding or subtracting a phase angle, this operations does not necessarily implies that the
quantity added or subtracted should be the same.

Another way to introduce a shift in the cycle would be expressing the function as a sum of the
cosine and sine functions as follows.

y = αcos(ωt) + βsin(ωt)

where α = ρcos(θ) and β = ρsin(θ), using the trigonometric identity cos(x± y) = cos(x)cos(y)∓
sin(x)sin(y).

The procedure could be performed backwards to recover the shift and the amplitude using θ =
tan−1(β/α) and ρ2 = α2 + β2 based in the trigonometric identity cos2(x) + sin2(x) = 1.
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