
January 2011

AIM SOLVE
(version 1.1)

Overview

The EViews aim solve add-in is a user-friendly interface to the Anderson-
Moore (AMA) algorithm (also known as AIM) for transforming linear ratio-
nal expectations models into a form that contains no future-dated variables.
The add-in requires R and the AMA package.1 The primary input to the add-
in is an EViews model that must be linear in variables, contain at least one
lead of a variable, and have a dynamic structure that satisifies a stability con-
dition. The primary output of the add-in is an EViews model that contains
only contemporaneous and lagged variables and thus can be simulated using
simple techniques. The procedure also creates a text file (aim solve text)
containing summary information.

Syntax

The procedure, which must be executed from a command line or in a pro-
gram, has two alternative forms:

A. input model name.aim solve(options)

B. input model name.aim solve(options) arg1 arg2

EViews assumes that each endogenous variable in a model will appear as
the first variable in one (and only one) of its equations. Form A, which uses
the EViews model processor to identify the endogenous variables, requires
that the input model satisfy this normalization condition. Exogenous vari-
ables are not permitted in form A. If the model contains shock variables,
their equations (typically, shockvar=0) need to explicitly appear in the in-
put model. To ensure that the contemporaneous effects of any shocks are
correctly transmitted, the output model is written in structural form.

yt = D0yt +D1yt−1 + . . . , (1)

1The Anderson-Moore algorithm is described in Anderson and Moore (1985) and An-
derson(2008, 2010). The R version of AMA was written by Gary Anderson and Aneesh
Raghunandan. See the “notes” section for instructions on how to install AMA.

1



In (1), y is the vector of model variables (including shocks) and each Di is a
matrix of structural coefficients.

It may be natural to express the equations of some models in a way
that does not satisfy the normalization requirement. Form B is available
for use in such cases, as an alternative to creating a normalized model by
hand. In this variant of the proc, two string variables define the endogenous
(arg1) and shock (arg2) variables. An option is available to instruct the
procedure to add the shock equations, if they are not already in the input
model. In the output model, the shock equations are omitted and the only
contemporaneous variables that appear on the right hand side of equations
are the shocks.

zt = B1zt−1 + . . .+Cxt. (2)

Here, z is the vector of endogenous variables (excluding shocks), x is the
vector of shocks, each Bi is a matrix of reduced-form coefficients, and C is a
matrix of structural shock coefficients.

Equations 1-2 are matrix representations of the output model. In fact,
the procedure creates an EViews model in which by default each equation
contains only those variables whose coefficients are not zero. The design of
simulations of the output model will depend on which version of the proce-
dure is used. In form A, the introduction of perturbations may require add
factors or the “exclusion” of one or more shock equations, whereas in form
B the shock variables are exogenous and can be perturbed directly.

Options

description default

parse=s/a Parsing method A:s; B:a
addshks Add shock equations (form B)
modout=text Name of output model aimmod
coefpre=text Coefficient prefix in output model c
mat=no/yes/only Option for retaining AMA matrices

in workspace
no

z=1/2 Option for how may variables to in-
clude in output model equations

1

debug Do not delete temporary matrices

2



The aim solve proc passes the input model to the AMA package as a matrix
of coefficients. The proc has two methods for parsing the input model to
create this coefficient matrix: one based on static simulations, the other on
arithmetic operations. The first method requires that the input model have
a form that EViews can simulate; the second does not. Because form A of the
procedure already requires that the input model meet the key normalization
attribute of a valid EViews model, the simulation-based parser (parse=s)
is the default in this case. On the other hand, because most models that
qualify for form A of the command can also be successfully parsed using the
other option, the best choice of parser may depend on relative speed, an
aspect of parser performance that varies with the specific characteristics of
each model.

Because the design of form B of the procedure permits models that do not
satisfy the normalization condition, the arithmetic parser is (parse=a) the
logical default in this case. This parser only requires that each equation be a
legal arithmetic expression. When it is desired to use form B with an input
model that meets the normalization criteria, the simulation-based parser may
be used. The addshks option instructs version B of the procedure to add
an equation of the form shockvar=0 for each variable in arg2.

Under the default settings, the name of the output model is aimmod and
the names of its coefficients are based on adding a c prefix to the name of the
endogenous variable associated with each equation. The modout and coef-

pre options may be used to select other model and coefficient names. The
mat option controls the retention of the AMA structural (scof) and reduced-
form (bmat) coefficient matrices in the workspace. The order in which vari-
ables/equations appear in these matrices is given by the variable/equation
order contained in the string varlist. When mat=only, the matrices are
saved in the workspace and the output EViews model is not constructed.
The z option controls how many variables with zero coefficients remain in
the output model. When z=1 (the default), each equation contains only
those variables that have non-zero coefficients in that equation. When z=2,
each equation contains all variables that have non-zero coefficients in at least
one equation. The latter setting reduces processing time but increases the
time required to simulate the output model. When the debug option is
specified, temporary working objects are not deleted and their names are
reported in the text object aim solve work.

3



Examples2

testmod.aim_solve

testmod.aim_solve(parse=a,modout=mymod,coefpre=x_)

string evar = "z1 z2 z3 z4"

string svar = "e1 e2"

testmod.aim_solve(addshks,mat=yes) evar svar

In the first example, the procedure takes the model testmod and creates
an output model named aimmod of the form given by equation 1. In the
second example, the input model is parsed using the arithmetic approach,
the output model is named mymod, and its coefficients have an x prefix.
In the third example, the string variables evar and svar contain the input
model’s endogenous and shock variables. A shock equation is added to the
input model for each variable in svar. The procedure creates an output
model named aimmod of the form given by equation 2. The AMA matrices
bmat and scof and string varlist remain in the workspace.3

Notes

Consider a linear model with m lags and n leads of the vector variable y,

H
−myt−m + . . .+H0yt + . . .+Hnyt+n = 0 (3)

EachHi is a square coefficient matrix. For models that satisfy the Blanchard-
Kahn conditions, AMA computes the coefficients of the structural and reduced-
form solutions,

Smyt−m + . . .+ S0yt = 0 (4)

Bmyt−m + . . .+B1yt−1 = yt (5)

The reduced-form coefficients (B) are related to the structural coefficients
(S) by the formula,

2For a more detailed presentation of how to use aim solve, see the two EViews programs
that are part of the add-in distribution.

3Equations 7 and 8 given the specific forms of bmat and scof .

4



Bi = −S−1

0 Si. (6)

The aim solve add-in has three steps. After determining the values of the
maximum lag (m) and lead (n), either static simulations or aritmetic oper-
ations are executed to calculate the elements of each Hi. The second step
passes this matrix form of the input model to R, calls AMA to solve for the
structural and reduced-form coefficient matrices,

scof = [Sm . . .S0] (7)

bmat = [Bm . . .B1] (8)

and moves the solution matrices back to the EViews workspace. The last
step assembles the EViews equation strings that form the output model.

To install (or update) the AMA package, start R and enter:

options(repos=c(CRAN = "ftp://cran.r-project.org/pub/R"))

install.packages("AMA")

References

Anderson, G. and Moore, G. ”A Linear Algebraic Procedure For Solving
Linear Perfect Foresight Models.” Economics Letters, 17, 1985.

Anderson, G. ”Solving Linear Rational Expectations Models: A Horse Race.”
Computational Economics, 2008, vol. 31, issue 2, pp. 95-113.

Anderson, G. ”A Reliable and Computationally Efficient Algorithm for Im-
posing the Saddle Point Property in Dynamic Models.” Journal of Economic
Dynamics and Control, 2010, vol 34, issue 3, pp. 472-489.

5


