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Abstract

The EViews add-in testcorr implements standard and robust procedures for testing the
significance of the autocorrelation in univariate data and the cross-correlation in bivariate
data. It also includes tests for the significance of pairwise Pearson correlation in multivariate
data and the i.i.d. property for univariate data. The standard testing procedures on
significance of correlation are used commonly by practitioners while their robust versions
were developed in Dalla et al. (2019), where the tests for i.i.d. property can be also found.
This document briefly outlines the testing procedures and provides simple examples.
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1 Introduction

Inference on the significance of the autocorrelation ρk = corr(xt, xt−k) or the cross-correlation

ρxy,k = corr(xt, yt−k) is a common first step in the analysis of univariate {xt} or bivariate

{xt, yt} time series data. Moreover, it is common to test the significance of pair-wise corre-

lations ρxixj = corr(xit, xjt) in multivariate {x1t, x2t, ..., xpt} data, cross-sectional or time series.

Standard inference procedures1 are valid for i.i.d. univariate or mutually independent bivari-

ate/multivariate data and their size can be significantly distorted otherwise, in particular, by

heteroscedasticity and dependence. The robust methods given in Dalla et al. (2019) allow test-

ing for significant autocorrelation/cross-correlation/correlation under more general settings, e.g.,

they allow for heteroscedasticity and dependence in each series and mutual dependence across

series.

The add-in testcorr implements the standard and robust procedures for testing significance of

autocorrelation and cross-correlation, respectively. Moreover, the add-in evaluates the sample

Pearson correlation matrix for multivariate data with robust p-values for testing significance of

its elements. The add-in also conducts testing procedures for the i.i.d. property of univariate

data introduced in Dalla et al. (2019). Sections 2-5 describe the testing procedures and pro-

vide examples. Section 6 outlines some suggestions relating to the application of the testing

procedures.

1Like those implemented by the Correlogram, the Cross-correlogram and the Covariance Analysis.
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2 Testing zero autocorrelation

For a univariate time series {xt}, given a sample x1, ..., xn, the null hypothesis H0 : ρk = 0 of no

autocorrelation at lag k = 1, 2, ... is tested at α significance level using the sample autocorrelation

ρ̂k and the 100(1 − α)% confidence band (CB) for zero autocorrelation, obtained using the

corresponding t-type statistics (tk “standard” and t̃k “robust”).2 The null hypothesis H0 : ρ1 =

... = ρm = 0 of no autocorrelation at cumulative lags m = 1, 2, ... is tested using portmanteau

type statistics (Ljung-Box LBm “standard” and Q̃m “robust”). The following notation is used.

Standard procedures:

CB(100(1− α)%) = (−zα/2/
√
n, zα/2/

√
n), tk =

√
nρ̂k, LBm = (n+ 2)n

m∑
k=1

ρ̂ 2
k

n−k .

Robust procedures:

CB(100(1− α)%) = (−zα/2 ρ̂kt̃k , zα/2
ρ̂k
t̃k

), t̃k =
∑n

t=k+1 etk

(
∑n

t=k+1 e
2
tk)

1/2 , Q̃m = t̃ ′ R̂∗−1 t̃,

where etk = (xt − x̄)(xt−k − x̄), x̄ = n−1
∑n

t=1 xt, t̃ = (t̃1, ..., t̃m)′ and R̂∗ = (r̂ ∗jk) is a matrix with

elements r̂ ∗jk = r̂jkI(|τjk| > λ) where λ is the threshold,

r̂jk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tj)

1/2(
∑n

t=max(j,k)+1 e
2
tk)

1/2
, τjk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tje

2
tk)

1/2
.

Applying standard and robust tests, at significance level α, H0 : ρk = 0 is rejected when ρ̂k /∈
CB(100(1 − α)%) or |tk|, |t̃k| > zα/2. In turn, H0 : ρ1 = ... = ρm = 0 is rejected when

LBm, Q̃m > χ2
m,α. Here, zα/2 and χ2

m,α stand for the upper α/2 and α quantiles of N(0,1) and

χ2
m distributions.

Example

We provide an example to illustrate testing for zero autocorrelation of a univariate time series

{xt}. We simulate n = 300 data as GARCH(1,1): xt = σtεt with σ2
t = 1 + 0.2x2t−1 + 0.7σ2

t−1

and εt ∼ i.i.d. N(0,1).3 The series {xt} is not autocorrelated but is not i.i.d. This is one of the

models examined in the Monte Carlo study of Dalla et al. (2019). They find that the standard

testing procedures are a bit oversized (e.g. by around 8% when k,m = 1), while the robust tests

are correctly sized. We choose a realization where this is evident. The simulated data for {xt}
are given in the workfile “simdata uni.wf1”.

2Robust CB for zero autocorrelation provides a robust acceptance region for H0.
3We initialize σ2

1 = var(xt) = 10, simulate 400 observations and drop the first 100.
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On the main dialog box of the add-in, we select Testing zero autocorrelation. We specify the

Series name x and set to 10 the Lags to include. By default, the value of the Significance

level is α = 5% and the value of the Threshold is λ = 2.576.

The graphs and the table with the results are provided in a spool called “x actest”.4 We have

the following testing outputs:
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Lag AC Stand. CB(95%) Robust CB(95%) Lag t p-value t-tilde p-value Lag LB p-value Q-tilde p-value

 1  0.169 (- 0.113, 0.113) (- 0.257, 0.257)  1  2.929  0.003  1.292  0.196  1  8.664  0.003  1.669  0.196
 2  0.157 (- 0.113, 0.113) (- 0.238, 0.238)  2  2.726  0.006  1.296  0.195  2  16.194  0.000  3.348  0.187
 3 -0.009 (- 0.113, 0.113) (- 0.209, 0.209)  3 -0.153  0.878 -0.083  0.934  3  16.218  0.001  3.355  0.340
 4  0.030 (- 0.113, 0.113) (- 0.159, 0.159)  4  0.517  0.605  0.369  0.712  4  16.491  0.002  3.491  0.479
 5 -0.054 (- 0.113, 0.113) (- 0.155, 0.155)  5 -0.937  0.349 -0.682  0.495  5  17.390  0.004  3.957  0.556
 6 -0.039 (- 0.113, 0.113) (- 0.137, 0.137)  6 -0.678  0.498 -0.560  0.576  6  17.862  0.007  4.270  0.640
 7  0.006 (- 0.113, 0.113) (- 0.146, 0.146)  7  0.101  0.920  0.078  0.938  7  17.872  0.013  4.276  0.747
 8 -0.045 (- 0.113, 0.113) (- 0.132, 0.132)  8 -0.777  0.437 -0.664  0.507  8  18.497  0.018  4.717  0.787
 9 -0.045 (- 0.113, 0.113) (- 0.136, 0.136)  9 -0.775  0.438 -0.645  0.519  9  19.121  0.024  5.132  0.823

 10  0.002 (- 0.113, 0.113) (- 0.145, 0.145)  10  0.036  0.972  0.028  0.978  10  19.122  0.039  5.133  0.882

The left-hand side graph is plotting for maximum 10 lags, the sample autocorrelation ρ̂k (“AC”),

the standard and robust CB(95%). The right-hand side graph is plotting for maximum 10

lags, the cumulative test statistics LBm, Q̃m and their critical values at 5% significance level

(“cv(5%)”). The table reports the results of the graphs along with the p-values for all the

statistics: standard tk (“t”) and LBm (“LB”) and robust t̃k (“t-tilde”) and Q̃m (“Q-tilde”).

4The name of the spool starts with the name of the series followed by “ actest”.
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From the left-hand side graph we can conclude that H0 : ρk = 0 is rejected at α = 5% when

k = 1, 2 and is not rejected at α = 5% when k = 3, ..., 10 using standard methods, but is not

rejected at α = 5% for any k using robust methods. From the right-hand side graph we can

conclude that the cumulative hypothesis H0 : ρ1 = ... = ρm = 0 is rejected at α = 5% for all m

using standard methods, but is not rejected at any m using robust methods. Subsequently, from

the p-values in the table we find that using standard methods, H0 : ρk = 0 is rejected at α = 1%

when k = 1, 2 and is not rejected at α = 10% when k = 3, ..., 10, whereas using robust methods

it is not rejected at α = 10% for any k. Using standard methods the cumulative hypothesis

H0 : ρ1 = ... = ρm = 0 is rejected at α = 0.1% for m = 2, at α = 1% when m = 1, 3, ..., 6 and

at α = 5% for m = 7, ..., 10, whereas using robust methods it is not rejected at α = 10% for any

m. Overall, standard testing procedures show evidence of autocorrelation, although the series is

not autocorrelated. The robust testing procedures provide the correct inference.

3 Testing zero cross-correlation

For a bivariate time series {xt, yt}, given a sample (x1, ..., xn), (y1, ..., yn), the null hypothesis

H0 : ρxy,k = 0 of no cross-correlation at lag k = 0, 1, 2, ... is tested at α significance level

using the sample cross-correlation ρ̂xy,k and the 100(1 − α)% confidence band (CB) for zero

cross-correlation, obtained using the corresponding t-type statistics (txy,k “standard” and t̃xy,k

“robust”).5 The null hypothesis H0 : ρxy,0 = ... = ρxy,m = 0 of no cross-correlation at cumulative

lags m = 0, 1, 2, ... is tested using portmanteau type statistics (Haugh-Box HBxy,m “standard”

and Q̃xy,m “robust”). The following notation is used.

Standard procedures:

CB(100(1− α)%) = (−zα/2/
√
n, zα/2/

√
n), txy,k =

√
nρ̂xy,k, HBxy,m = n2

m∑
k=0

ρ̂ 2
xy,k

n−k .

Robust procedures:

CB(100(1− α)%) = (−zα/2 ρ̂xy,k
t̃xy,k

, zα/2
ρ̂xy,k

t̃xy,k
), t̃xy,k =

∑n
t=k+1 exy,tk

(
∑n

t=k+1 e
2
xy,tk)

1/2 , Q̃xy,m = t̃ ′xy R̂
∗−1
xy t̃xy,

where exy,tk = (xt − x̄)(yt−k − ȳ), x̄ = n−1
∑n

t=1 xt, ȳ = n−1
∑n

t=1 yt, t̃xy = (t̃xy,0, ..., t̃xy,m)′ and

R̂∗xy = (r̂ ∗xy,jk) is a matrix with elements r̂ ∗xy,jk = r̂xy,jkI(|τxy,jk| > λ) where λ is the threshold,

r̂xy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tj)

1/2(
∑n

t=max(j,k)+1 e
2
xy,tk)

1/2
, τxy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk)

1/2
.

5Robust CB for zero cross-correlation provides a robust acceptance region for H0.
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Applying standard and robust tests, at significance level α, H0 : ρxy,k = 0 is rejected when

ρ̂xy,k /∈ CB(100(1− α)%) or |txy,k|, |t̃xy,k| > zα/2. In turn, H0 : ρxy,0 = ... = ρxy,m = 0 is rejected

when HBxy,m, Q̃xy,m > χ2
m,α. Here, zα/2 and χ2

m,α stand for the upper α/2 and α quantiles of

N(0,1) and χ2
m distributions.

The above procedures where outlined for k,m ≥ 0. For k,m < 0, the tests are analogously

defined, noting that ρ̂xy,k = ρ̂yx,−k, txy,k = tyx,−k, t̃xy,k = t̃yx,−k, HBxy,m = HByx,−m, Q̃xy,m =

Q̃yx,−m.

Example

We provide an example to illustrate testing for zero cross-correlation of a bivariate time series

{xt, yt}. We simulate n = 300 data as noise and SV-AR(1) using the same noise in the AR(1)

part: xt = εt and yt = exp(zt)ut with zt = 0.7zt−1 + εt, εt, ut ∼ i.i.d. N(0,1), {εt} and {ut}
mutually independent.6 The series {xt} and {yt} are uncorrelated but are not independent

of each other, both are serially uncorrelated and only {xt} is i.i.d. This is one of the models

examined in the Monte Carlo study of Dalla et al. (2019). They find that the standard testing

procedures are rather oversized (e.g. by around 25% when k,m = 0), while the robust tests are

correctly sized. We choose a realization where this is evident. The simulated data for {xt, yt}
are given in the workfile “simdata biv multi.wf1”.

On the main dialog box of the add-in, we select Testing zero cross-correlation. We specify the

Pair of series x y and set to 10 the Lags to include. By default, the value of the Significance

level is α = 5% and the value of the Threshold is λ = 2.576.

The graphs and the tables with the results are provided in a spool called “x y cctest”.7 We have

the following testing outputs:

6We initialize z1 = Ezt = 0, simulate 400 observations and drop the first 100.
7The name of the spool starts with the names of the series followed by “ cctest”.
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Lag CC Stand. CB(95%) Robust CB(95%) Lag t p-value t-tilde p-value Lag HB p-value Q-tilde p-value

 0  0.188 (- 0.113, 0.113) (- 0.312, 0.312)  0  3.259  0.001  1.183  0.237  0  10.621  0.001  1.400  0.237
 1  0.118 (- 0.113, 0.113) (- 0.162, 0.162)  1  2.046  0.041  1.426  0.154  1  14.822  0.001  3.434  0.180
 2  0.080 (- 0.113, 0.113) (- 0.100, 0.100)  2  1.384  0.166  1.560  0.119  2  16.750  0.001  5.867  0.118
 3  0.068 (- 0.113, 0.113) (- 0.106, 0.106)  3  1.186  0.236  1.269  0.204  3  18.170  0.001  7.477  0.113
 4  0.012 (- 0.113, 0.113) (- 0.152, 0.152)  4  0.215  0.830  0.160  0.873  4  18.217  0.003  7.503  0.186
 5 -0.069 (- 0.113, 0.113) (- 0.158, 0.158)  5 -1.197  0.232 -0.857  0.391  5  19.673  0.003  8.238  0.221
 6  0.067 (- 0.113, 0.113) (- 0.125, 0.125)  6  1.167  0.243  1.056  0.291  6  21.062  0.004  9.353  0.228
 7  0.099 (- 0.113, 0.113) (- 0.213, 0.213)  7  1.718  0.086  0.914  0.361  7  24.084  0.002  10.188  0.252
 8 -0.020 (- 0.113, 0.113) (- 0.079, 0.079)  8 -0.343  0.732 -0.490  0.624  8  24.205  0.004  10.428  0.317
 9  0.055 (- 0.113, 0.113) (- 0.066, 0.066)  9  0.959  0.337  1.637  0.102  9  25.154  0.005  13.109  0.218

 10  0.049 (- 0.113, 0.113) (- 0.071, 0.071)  10  0.855  0.392  1.360  0.174  10  25.911  0.007  14.958  0.184
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Tests for cross-correlation of X and Y(+k)

Lead CC Stand. CB(95%) Robust CB(95%) Lead t p-value t-tilde p-value Lead HB p-value Q-tilde p-value

 0  0.188 (- 0.113, 0.113) (- 0.312, 0.312)  0  3.259  0.001  1.183  0.237  0  10.621  0.001  1.400  0.237
 1  0.159 (- 0.113, 0.113) (- 0.221, 0.221)  1  2.746  0.006  1.405  0.160  1  18.185  0.000  3.375  0.185
 2  0.157 (- 0.113, 0.113) (- 0.197, 0.197)  2  2.713  0.007  1.562  0.118  2  25.597  0.000  5.815  0.121
 3 -0.013 (- 0.113, 0.113) (- 0.175, 0.175)  3 -0.229  0.819 -0.147  0.883  3  25.650  0.000  5.837  0.212
 4  0.011 (- 0.113, 0.113) (- 0.141, 0.141)  4  0.195  0.845  0.157  0.876  4  25.689  0.000  5.862  0.320
 5  0.107 (- 0.113, 0.113) (- 0.141, 0.141)  5  1.859  0.063  1.491  0.136  5  29.201  0.000  8.083  0.232
 6  0.036 (- 0.113, 0.113) (- 0.085, 0.085)  6  0.630  0.529  0.839  0.401  6  29.606  0.000  8.788  0.268
 7 -0.081 (- 0.113, 0.113) (- 0.157, 0.157)  7 -1.407  0.159 -1.013  0.311  7  31.634  0.000  9.813  0.278
 8 -0.007 (- 0.113, 0.113) (- 0.127, 0.127)  8 -0.122  0.903 -0.109  0.914  8  31.649  0.000  9.825  0.365
 9  0.013 (- 0.113, 0.113) (- 0.058, 0.058)  9  0.218  0.827  0.422  0.673  9  31.698  0.000  10.003  0.440

 10  0.016 (- 0.113, 0.113) (- 0.047, 0.047)  10  0.281  0.779  0.677  0.498  10  31.780  0.001  10.462  0.489
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The left-hand side graphs are plotting for maximum ±10 lags, the sample cross-correlation ρ̂xy,k

(“CC”), the standard and robust CB(95%). The right-hand side graphs are plotting for maximum

±10 lags, the cumulative test statistics HBxy,m, Q̃xy,m and their critical values at 5% significance

level (“cv(5%)”). The tables report the results of the graphs along with the p-values for all

the statistics: standard txy,k (“t”) and HBxy,m (“HB”) and robust t̃xy,k (“t-tilde”) and Q̃xy,m

(“Q-tilde”).

From the left-hand side graphs we can conclude that H0 : ρxy,k = 0 is rejected at α = 5% when

k = −2,−1, 0, 1 and is not rejected at α = 5% for k 6= −2,−1, 0, 1 using standard methods,

but is not rejected at α = 5% for any k using robust methods. From the right-hand side graphs

we can conclude that the cumulative hypothesis H0 : ρxy,0 = ... = ρxy,m = 0 is rejected at

α = 5% for all m using standard methods, but is not rejected at any m using robust methods.

Subsequently, from the p-values in the tables we find that using standard methods, H0 : ρxy,k = 0

is rejected at α = 1% when k = −2,−1, 0, at α = 5% for k = 1, at α = 10% when k = −5, 7

and is not rejected at α = 10% for all k 6= −5,−2,−1, 0, 1, 7, whereas using robust methods

it is not rejected at α = 10% for any k. Using standard methods the cumulative hypothesis

H0 : ρxy,0 = ... = ρxy,m = 0 is rejected at α = 0.1% when m = −10, ...,−1, 1, 2 and at α = 1%

for m = 0, 3, ..., 10, whereas using robust methods it is not rejected at α = 10% for any m.

Overall, standard testing procedures show evidence of cross-correlation, although the series are

uncorrelated from each other. The robust testing procedures provide the correct inference.

4 Testing zero Pearson correlation

For multivariate series {x1t, ..., xpt}, given a sample (x11, ..., x1n), ..., (xp1, ..., xpn), the null hy-

pothesis H0 : ρxixj = 0 of no correlation between variables {xit, xjt} is tested at α significance

level using the sample Pearson correlation ρ̂xixj and the p-value of the robust t-type statistic

t̃xixj . This robust procedure is obtained from the t̃xy,k test of Section 3 setting x = xi, y = xj

and k = 0.

Example

We provide an example to illustrate testing zero correlation between variables of a 4-dimensional

series {x1t, x2t, x3t, x4t}. We use the simulated data from the series {xt, yt, zt, ut} of Section 3.

The pairs {xt, ut} and {zt, ut} are independent, {xt, yt} and {yt, zt} are uncorrelated but are

dependent, while {xt, zt} and {yt, ut} are correlated. From the four series only {xt} and {ut} are

i.i.d. The simulated data for {xt, yt, zt, ut} are given in the workfile “simdata biv multi.wf1”.
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On the main dialog box of the add-in, we select Testing zero Pearson correlation. We specify

the List of series x y z u.

The tables with the results are provided in a spool called “x u rcorrtest”.8 We have the following

testing outputs:

Matrix of Pearson correlations

X Y Z U

X  1  0.188  0.716  0.005

Y  0.188  1  0.280  0.210

Z  0.716  0.280  1  0.020

U  0.005  0.210  0.020  1

Matrix of p-values

X Y Z U
X  0.237  0.000  0.933
Y  0.237  0.169  0.003
Z  0.000  0.169  0.703
U  0.933  0.003  0.703

The two tables report the sample Pearson correlations ρ̂xixj among all pairs i, j of variables (left)

and their p-values for testing significance of correlation (right).

From the p-values in the right-hand side table we can conclude that H0 : ρxy = 0, H0 : ρxu = 0,

H0 : ρyz = 0 and H0 : ρzu = 0 are not rejected at α = 10%, H0 : ρxz = 0 is rejected at α = 0.1%

and H0 : ρyu = 0 is rejected at α = 1%. Overall, the robust testing procedure provides the

correct inference. In contrast, the standard procedure9 gives wrong inference when the series are

uncorrelated but dependent. To demonstrate this, we use Covariance Analysis to evaluate the

sample Pearson correlations and their p-values for testing significance of correlation.

We have the following outputs:

Covariance Analysis: Ordinary
Date: 29/01/20   Time: 09:00
Sample: 1 300
Included observations: 300

Correlation X Y Z U 
X 1.000000
Y 0.188161 1.000000
Z 0.715752 0.280011 1.000000
U 0.004634 0.209584 0.019612 1.000000

Probability X Y Z U 
X ----- 
Y 0.0011 ----- 
Z 0.0000 0.0000 ----- 
U 0.9363 0.0003 0.7351 ----- 

8The name of the spool starts with the names of the first and the last series followed by “ rcorrtest”.
9The standard procedure is implemented using Covariance Analysis. There, the standard t-test differs

slightly from that given in Section 3. In Covariance Analysis the statistic t′xixj
= ρ̂xixj

√
(n− 2)/(1− ρ̂ 2

xixj
)

and critical values from the tn−2 distribution are used, while in Section 3 we take txixj =
√
n ρ̂xixj and critical

values from the N(0,1) distribution. For big samples, they give very similar results under H0. For example, in
Section 3 we find p-value of 0.00112 in testing H0 : ρxy = 0 with the standard txy test, while in the output from
Covariance Analysis it is 0.00106 using the standard t′xy test.
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From the p-values in the right-hand side table we can conclude that H0 : ρxu = 0 and H0 : ρzu = 0

are not rejected at α = 10%, H0 : ρxz = 0, H0 : ρyz = 0 and H0 : ρyu = 0 are rejected at α = 0.1%

and H0 : ρxy = 0 is rejected at α = 1%. Hence, using the standard procedure we wrongly conclude

that the series {xt} with {yt} and {yt} with {zt} are correlated.

5 Testing i.i.d. property

For a univariate series {xt}, given a sample x1, ..., xn, the null hypothesis of the i.i.d. property

is tested at lag k = 1, 2, ... by verifying H0 : ρx,k = 0, ρ|x|,k = 0 or H0 : ρx,k = 0, ρx2,k = 0, using

the Jx,|x|,k and Jx,x2,k statistics.10 The null hypothesis of the i.i.d. property at cumulative lags

m = 1, 2, ... is tested by verifying H0 : ρx,k = 0, ρ|x|,k = 0, k = 1, ...,m or H0 : ρx,k = 0, ρx2,k =

0, k = 1, ...,m, using the Cx,|x|,m and Cx,x2,m statistics. The following notation is used.

Jx,|x|,k =
n2

n− k
(ρ̂ 2
x,k + ρ̂ 2

|x|,k), Cx,|x|,m =
m∑
k=1

Jx,|x|,k,

Jx,x2,k =
n2

n− k
(ρ̂ 2
x,k + ρ̂ 2

x2,k), Cx,x2,m =
m∑
k=1

Jx,x2,k,

where ρ̂x,k = ĉorr(xt, xt−k), ρ̂|x|,k = ĉorr(|xt − x̄|, |xt−k − x̄|), ρ̂x2,k = ĉorr((xt − x̄)2, (xt−k − x̄)2)

and x̄ = n−1
∑n

t=1 xt with ĉorr denoting the sample correlation estimate.

Applying the tests, at significance level α, H0 : ρx,k = 0, ρ|x|,k = 0 or H0 : ρx,k = 0, ρx2,k = 0 is

rejected when Jx,|x|,k > χ2
2,α or Jx,x2,k > χ2

2,α. In turn, H0 : ρx,k = 0, ρ|x|,k = 0, k = 1, ...,m or

H0 : ρx,k = 0, ρx2,k = 0, k = 1, ...,m is rejected when Cx,|x|,m > χ2
2m,α or Cx,x2,m > χ2

2m,α. Here,

χ2
m,α stands for the upper α quantile of χ2

m distribution.

Example

We provide an example to illustrate testing for the i.i.d. property of a univariate series {xt}. We

use the simulated data from the series {xt} of Section 3. The series {xt} is i.i.d. The simulated

data for {xt} are given in the workfile “simdata biv multi.wf1”.

On the main dialog box of the add-in, we select Testing iid property. We specify the Series

name x and set to 10 the Lags to include.11 By default, the value of the Significance level

is α = 5%.

10Notation: ρx,k = corr(xt, xt−k), ρ|x|,k = corr(|xt − µ|, |xt−k − µ|), ρx2,k = corr((xt − µ)2, (xt−k − µ)2) and
µ = Ext.

11The first letter of the series name is used as subscript in the statistics.
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The graphs and the table with the results are provided in a spool “x iidtest”.12 We have the

following testing outputs:

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

J[X,|X|] J[X,X^2] cv(5%)

Tests for iid property of X

Lag

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

C[X,|X|] C[X,X^2] cv(5%)

Cumulative tests for iid property of X

Lag

Tests for iid property of X

Lag J[X,|X|] p-value J[X,X^2] p-value Lag C[X,|X|] p-value C[X,X^2] p-value

 1  4.189  0.123  4.876  0.087  1  4.189  0.123  4.876  0.087
 2  0.317  0.853  0.489  0.783  2  4.507  0.342  5.365  0.252
 3  6.534  0.038  5.757  0.056  3  11.041  0.087  11.122  0.085
 4  1.626  0.444  2.571  0.277  4  12.666  0.124  13.692  0.090
 5  1.586  0.452  0.763  0.683  5  14.252  0.162  14.455  0.153
 6  0.979  0.613  2.243  0.326  6  15.231  0.229  16.698  0.161
 7  0.906  0.636  0.940  0.625  7  16.138  0.305  17.638  0.224
 8  6.741  0.034  6.110  0.047  8  22.878  0.117  23.748  0.095
 9  0.090  0.956  0.012  0.994  9  22.968  0.192  23.759  0.163

 10  3.228  0.199  3.436  0.179  10  26.196  0.159  27.195  0.130

The graphs are plotting for maximum 10 lags, the test statistics Jx,|x|,k, Jx,x2,k (left), the cu-

mulative test statistics Cx,|x|,m, Cx,x2,m (right) and their critical values at 5% significance level

(“cv(5%)”). The table reports the results of the graphs along with the p-values for all the

statistics: Jx,|x|,k (“J[x,|x|]”), Jx,x2,k (“J[x,x2]”), Cx,|x|,m (“C[x,|x|]”) and Cx,x2,m (“C[x,x2]”).

From the left-hand side graph we can conclude that H0 : ρx,k = 0, ρ|x|,k = 0 is not rejected

at α = 5% for any k except k = 3, 8 or H0 : ρx,k = 0, ρx2,k = 0 is not rejected at α = 5%

for any k except k = 8. From the right-hand side graph we can conclude that the cumulative

hypothesis H0 : ρx,k = 0, ρ|x|,k = 0, k = 1, ...,m or H0 : ρx,k = 0, ρx2,k = 0, k = 1, ...,m is

not rejected at α = 5% for any m. Subsequently, from the p-values in the table we find that

12The name of the spool starts with the name of the series followed by “ iidtest”.
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H0 : ρx,k = 0, ρ|x|,k = 0 is rejected at α = 5% for k = 3, 8 and is not reject at α = 10%

when k 6= 3, 8 or H0 : ρx,k = 0, ρx2,k = 0 is rejected at α = 5% for k = 8 and at α = 10%

for k = 1, 3 and is not rejected at α = 10% when k 6= 1, 3, 8. The cumulative hypothesis

H0 : ρx,k = 0, ρ|x|,k = 0, k = 1, ...,m is rejected at α = 10% for m = 3 and is not rejected

at α = 10% when m 6= 3 or H0 : ρx,k = 0, ρx2,k = 0, k = 1, ...,m is rejected at α = 10% for

m = 1, 3, 4, 8 and is not rejected at α = 10% for m 6= 1, 3, 4, 8. Overall, the testing procedures

provide the correct inference.

6 Remarks

The theory and Monte Carlo study in Dalla et al. (2019) suggest that:

(i) In testing for autocorrelation the series needs to have constant mean.

(ii) In testing for cross-correlation each of the series needs to have constant mean and to be

serially uncorrelated when applying the portmanteau type statistics or at least one when

applying the t-type tests.

(iii) In testing for Pearson correlation at least one of the series needs to have constant mean and

to be serially uncorrelated.

(iv) For relatively large lag it may happen that the robust portmanteau statistic is negative. In

such a case, missing values (“NA”) are reported for the statistic and its p-value.

(v) The values λ = 1.96, 2.576 are good candidates for the threshold in the robust portmanteau

statistics, with λ = 2.576 performing better at relatively large lags.

Acknowledgments

Dalla acknowledges financial support from ELKE-EKPA. Phillips acknowledges support from

the Kelly Fund at the University of Auckland and a KLC Fellowship at Singapore Management

University.

References

Dalla, V., Giraitis, L., & Phillips, P. C. B. (2019). Robust tests for white noise and cross-

correlation. Cowles Foundation, Discussion Paper No. 2194. https://cowles.yale.edu/

sites/default/files/files/pub/d21/d2194.pdf.

11

https://cowles.yale.edu/sites/default/files/files/pub/d21/d2194.pdf
https://cowles.yale.edu/sites/default/files/files/pub/d21/d2194.pdf


Haugh, L. D. & Box, G. E. P. (1977). Identification of dynamic regression (distributed lag)

models connecting two time series. Journal of the American Statistical Association, 72 (357),

121–130.

Ljung, G. M. & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika,

65 (2), 297–303.

Pearson, K. (1896). Mathematical contributions to the theory of evolution. iii. regression, hered-

ity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Con-

taining Papers of a Mathematical or Physical Character, 187, 253–318.

Yule, U. G. (1926). Why do we sometimes get nonsense-correlations between time-series? a

study in sampling and the nature of time-series. Journal of the Royal Statistical Society, 89

(1), 1–63.

12


	Introduction
	Testing zero autocorrelation
	Testing zero cross-correlation
	Testing zero Pearson correlation
	Testing i.i.d. property
	Remarks

