
%6ÉÅ×Ó $ÁÔÁÂÁÓÅ %ØÔÅÎÓÉÏÎ)ÎÔÅÒÆÁÃÅ

September 23, 2014

Table of Contents
Introduction .. 2

Examples ... 4

File Based Database .. 4

XML Folder Based Database ... 17

SQL Server Database ... 39

Distributing a Database Extension .. 57

Installing your Database Extension ... 57

Registering your Database Manager... 57

Making EViews aware of your Database Manager ... 58

API Reference .. 60

IDatabaseManager .. 60

IDatabase .. 70

IDatabaseBrowser ... 82

IDatabaseBrowserEvents .. 83

Frequency ... 85

JsonReader .. 90

JsonWriter ... 96

APPENDIX A: Attribute Formats .. 100

APPENDIX B: Database Attributes... 102

APPENDIX C: Object Attributes ... 104

Introduction 1
Up until now, EViews users could only open a handful of EViews supported foreign database formats

(such as DataStream, EcoWin, Haver, FRED, etc.) directly within EViews. If their data resided in an

unsupported database format, users were limited to using ODBC (if an ODBC driver was available) or

using an intermediate file format (such as XLS, CSV or HTML) or the Windows clipboard to exchange

data. There are several limitations to this approach:

- working with generic formats such as text and Excel files can be complicated since these formats

are not self-describing so that additional information about the structure of the files may be

needed for EViews to understand the files.

- frequency information must be inferred by EViews from date identifiers accompanying the data

and this is not always reliable.

- there is no way to communicate additional attributes along with the observation values such as

source, units, etc.

- data brought into EViews this way cannot be "linked" back to the source to allow for automatic

refreshes when a workfile is loaded. (Data can only be updated by rerunning an EViews program

to manually perform the refresh.)

In an effort to provide EViews with access to as broad a range of data sources as possible, we have

created a new Database Extension Interface. Now, any external data source that implements this

interface can be opened directly from within EViews and used just like an EViews database.

By implementing a database extension for an external database format, you can extend EViews to

include one or more of the following functionalities:

- an EViews user can ask what objects the external database contains

- an EViews user can read data objects from the external database

- an EViews user can write data objects to the external database

- an EViews user can browse through the contents of the external database using a custom

graphical interface developed specifically for the data source

The Database Extension Interface is a set of COM interfaces. Supporting a new format involves creating

a small library (usually housed in a DLL) that contains COM objects that implement these interfaces. The

library can be developed in many different programming environments including native C++ and

Microsoft .NET. These COM objects are used by EViews to interact with the underlying database.

The two main EViews COM interfaces for EDX are:

IDatabaseManager

IDatabase

1
 All product names mentioned may be trademarks or registered trademarks of their respective companies

IDatabaseManager is the initial contact point between EViews and the custom database format. A single

database manager is created once per session for each format. The manager provides EViews with

information about the database format (e.g. attributes such as format name, description, and whether

the format is file or server based). EViews uses the manager to open a connection to a server if

necessary, and create, rename, copy, or delete databases.

IDatabase represents a currently open database. EViews calls functions in IDatabase whenever a user

needs to search the database or when a user tries to read or write a data object to the database (such as

a series object, matrix/vector object, or string). IDatabase also provides additional management

functions such as copying, renaming, and deleting objects within the database if the format supports

writing.

To help you implement your database extension, EViews also provides several utility classes as part of

the API. These classes are provided to help facilitate development of a database extension, but their use

is optional. The Frequency class exports a variety of functionality available within EViews for working

with calendar date and frequency information. The JsonReader and JsonWriter classes provide

functionality to assist with processing content in JavaScript Object Notation (JSON) format.

Note that the EViewsEdx type library that declares these interfaces also contains a class

EViewsDatabaseManager. This class is intended for applications where a user would like to work with

data stored within EViews proprietary file formats (EViews databases and workfiles) within an external

application. This class is not likely to be used when implementing an EViews Database Extension. Please

see the EViews Database Objects (EDO) documentation for further discussion.

Most of the information passed between EViews and the Database Extension Interface is transferred in

sets of attributes where the attributes closely follow EViews conventions. In the material below we

assume basic familiarity with EViews. If any terms are unfamiliar, you should refer to the main EViews

documentation for further information.

Examples
We provide three examples which will walk you through the methods necessary for working with the

EViews Database Extension Interface. The first example illustrates reading from a single text file (see File

Based Database). The second example uses multiple XML files in a folder, and demonstrates both

reading and writing (see XML Folder Based Database). Finally, we walk through a Read Only SQL Server

database example (see SQL Server Database).

Note that we have also made available an additional project that contains source code for a full

production implementation of an EViews Database Extension to support U.S. Energy Information

Administration (EIA) data. This project shows off many advanced features of a database extension

including a custom browser implementation. Please visit the EViews web site for details.

File Based Database
²ŜΩƭƭ ōŜƎƛƴ ǿƛǘƘ ŀ ǊŜŀŘ only database extension that allows you to import data from a text file. The text

file for this database contains a line of data for each object in the following format:

Name|Type|Frequency|Start|Data

where the data is comma delimited.

For example, the text file "test.cdb" contains the following content:

X|series|A|1950|1,2,3,4,5,6,7,8,9,10

Y|series|A|1950|11,12,13,14,15,16,17,18,19,20

Z|alpha|A|1950|a,b,c,d,e,f,g,h,i,j

We will use Visual Studio to create a VB.NET Class Library that implements a database extension that

can read this file.

The complete source code for this example is provided in the EdxSamples project available at
http://www.eviews.com/EViews8/Enterprise/EDXeg.html (for Visual Studio 2012). You can examine and
modify this to suit your own needs. You may find it useful to follow the steps below as you read through
the discussion so you can better understand how the example project was created.

Verify that EViews Database Extension 1.0 Type Library is Registered

Before starting Visual Studio, we need to verify that the EViews Database Extension type library is

properly registered on your system. This should happen automatically during the installation of EViews.

To verify this, run EViews 8.1, and enter the REGCOMPONENTS command. Verify that it says "Database

Extension Interface: Registered" in the dialog. If not, click "Yes" to register it on your system.

Create a VB Class Library Project

Startup Visual Studio and create a new Visual Basic Class Library project named "EdxSamples".

http://www.eviews.com/EViews8/Enterprise/EDXeg.html

Add a Reference to the EViewsEdx Type Library

This project will need a reference to the EViews Database Extension type library in order to see our

interface definitions. Right-click "EdxSamples" in Solution Explorer and select "!ŘŘ wŜŦŜǊŜƴŎŜΧ".

In the Add Reference dialog, select the COM tab and scroll down to "EViews Database Extension 1.0

Type Library" (or "EViews Database Extension 1.0 Beta Type Library" for IHS Beta users). Select this row

and click OK. The definitions should now be available inside your project in the namespace "EViewsEdx".

Turn on COM Registration

The COM objects created by our project will need to be registered with Windows before they can be

used by EViews. Visual Studio can be configured to do this automatically as part of the project build. To

do this, right-click the "EdxSamples" project and select "Properties".

In the left tab bar, select "Compile".

Scroll down to the bottom of this page, and make sure the "Register for COM interop" checkbox is

checked. Click the save toolbar button above to save these new settings to the project.

Now, whenever the project is compiled, Visual Studio will register any COM objects in our project with

Windows so that they are available to COM clients such as EViews.

Note that you may need to run Visual Studio in administrative mode in order for this COM registration

step to succeed.

Create the Custom folder

{ƛƴŎŜ ǘƘƛǎ Φb9¢ ǇǊƻƧŜŎǘ ǿƛƭƭ ŜǾŜƴǘǳŀƭƭȅ Ŏƻƴǘŀƛƴ ƳǳƭǘƛǇƭŜ ŘŀǘŀōŀǎŜ ŜȄǘŜƴǎƛƻƴ ŜȄŀƳǇƭŜǎΣ ǿŜΩƭƭ ŎǊŜŀǘŜ ŀ ƴŜǿ

folder named "Custom" to group the Custom Database Extension files together. Right-click the

"EdxSamples" project in the Solution Tree view, then select "Add", then "New Folder". Name the folder

"Custom".

Create the Database Manager class

Delete the empty Class1.vb file that was previously generated by the Project wizard. Then, right click the

"Custom" folder and select "Add", then "ClassΧ" from the menu.

In the Add New Item dialog, select the "Class" template and rename the file to "CustomDbMgr", then

click Add.

Since this class will be a public COM object, we need to tell Visual Studio to make this class visible to

COM clients and enter its GUID value. ²ŜΩƭƭ ŀƭǎƻ ǘŜƭƭ ±ƛǎǳŀƭ {ǘǳŘƛƻ not to create a separate COM

interface for the class because the only functions that need to be visible over COM are already described

in the EViews type libraries. To do this, copy and paste the following lines in the CustomDbMgr.vb file

above the "Public Class" line:

Imports System.Runtime.InteropServices

<Guid(" XXXXXXXX- XXXX- XXXX- XXXX- XXXXXXXXXXXX"), _

 ClassInterface(ClassInterfaceType.None), _

 ComVisible(True)> _

Public Class CustomDbMgr

Note that Visual Studio will automatically assign the ProgId "EdxSamples.CustomDBMgr" to our class.

Also, make sure you replace the Guid("XXXX") part with a real GUID. You can generate a new GUID by

running the "Create GUID" tool from within Visual Studio (Tools->Create GUID). Make sure you remove

any curly braces from the start and end of the GUID string.

Because this class will be our Database Manager, it will need to implement the

EViewsEdx.IDatabaseManager interface. Below the "Public Class" line, add the following:

Public Class Custom DbMgr

 Implements EViewsEdx.IDatabaseManager

After adding this line, .NET will automatically add empty versions of each function that is part of the

IDatabaseManager interface to the class.

¢ƘŜ ŦƛǊǎǘ ƳŜǘƘƻŘ ǿŜΩƭƭ ŎƻŘŜ ƛǎ ǘƘŜ DŜǘ!ǘǘǊƛōǳǘŜǎ ƳŜǘƘƻŘΦ

GetAttributes

GetAttributes returns a list of important attributes about the database format that EViews needs to

know to interact with databases of this format. Lƴ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ǿŜΩƭƭ ƴƻǘƛŦȅ 9±ƛŜǿǎ ƻŦ ƻǳǊ ŦƻǊƳŀǘΩǎ

name, description, type, file extension and search capabilities. ²ŜΩƭƭ ŀƭǎƻ ƴƻǘƛŦȅ 9±ƛŜǿǎ ǘƘŀǘ ǿŜ Řƻ ƴƻǘ

allow create mode and only support read access (no writing):

Public Function GetAttributes(ByVal clientInfo As String) As Object _

 Implements EViewsEdx.IDatabaseManager.GetAttributes

 Return " name=CustomDb,description=Custom Text Database, " & _

 " type=customdb,ext=cdb,nocreate,readonly,search=all|attr "

End Function

The clientInfo parameter that is passed into this method will contain information about the client

that instanced the Database Manager. For our purposes, we will ignore this parameter.

The name attribute is a short (generally one or two word) name for the format used when error

messages are displayed.

The description attribute is a longer description for the database format that will be used in EViews

dialogs and in the caption for the Database window:

The type attribute is used to identify the format in EViews commands that require a type option (e.g.

dbopen (type= customdb)).

The ext attribute notifies EViews that we are a file-based database whose file extension is "cdb".

The nocreate attribute notifies EViews that we do not support creating new databases in this format.

This will prevent EViews from displaying our database format in the New Database dialog.

The readonly attribute notifies EViews that we do not support writing, copying, renaming, or deleting

any of our objects in our database.

The search attribute notifies EViews what type of searching our database supports. We want both the

"All" button (which displays all available objects from the XML folder) and the two "Attr" based search

buttons, "EasyQuery" and "Query" (which allow the user to do a search by attributes across objects

within the database).

Please refer to Appendix B for details on each of these attributes.

bƻǿ ǘƘŀǘ ǿŜΩve told EViews the general details of our database format, our manager needs to be able

to return a specific database to EViews.

OpenDb

Whenever an EViews user opens a database in our format, EViews will call the OpenDb method on

IDatabaseManager to retrieve an IDatabase interface. The IDatabase interface represents a

"connection" to our database and will be used by EViews to read from our database.

Public Function OpenDb(ByVal databaseId As String , _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode, _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As EViewsEdx.IDatabase _

 Implements EViewsEdx.IDatabaseManager.OpenDb

 Return New CustomDb(databaseId)

End Function

Before we can use this method, we will need to define the CustomDb class that will be returned by this

method.

Create the Database class

Like before, right click the "Custom" folder in the Solution Explorer and select "Add", then "ClassΧ" from

the menu. In the Add New Item dialog, select the "Class" template and rename the file to

"CustomDb.vb" and click Add.

Unlike CustomDbMgr, this class does not need to be ComVisible as EViews will never instantiate it

directly. Instead, CustomDbMgr will create this object and return a reference to it inside the OpenDb

call.

CustomDb will need to implement the EViewsEdx.IDatabase interface in order for it to be usable by

EViews:

Imports System.Runtime.InteropServices

Public Class Custom Db

 Implements EViewsEdx.IDatabase

After adding this line, .NET will automatically add empty versions of each function that is required by our

IDatabase interface. ²ŜΩƭƭ ōŜƎƛƴ ōȅ ŀŘŘƛƴƎ ǎƻƳŜ Ŏƭŀǎǎ ƭŜǾŜƭ ǾŀǊƛŀōƭŜǎ ŀƴŘ ŀ ƴŜǿ 9ƴǳƳŜǊŀǘƛƻƴΥ

Imports System.Runtime.InteropServices

Public Enum FieldOrder

 Name = 0

 Type

 Freq

 Start

 Data

End Enum

Public Class CustomDb

 Implements EViewsEdx.IDatabase

 Private msDatabaseId As String

 Private miLineIndex As Integer

 Private miLineCount As Integer

 Private maLines() As String

and also a new class constructor:

Public Sub New(ByVal databaseId As String)

 MyBase.New()

 msDatabaseId = databaseId

 'make sure the file exists and throw an error if it doesn't

 If Not System.IO.File.Exists(msDatabaseId) Then

 Throw New COMException(String .Empty,

EViewsEdx.ErrorCode.FILE_FILENAME_INVALID)

 End If

 maLines = System.IO.File.ReadAllLines(msDatabaseId)

 miLineCount = UBound(maLines) - LBound(maLines) + 1

End Sub

First, we save the databaseId value into a member variable so we can refer to it in later function calls.

databaseId represents the path to the user selected database file. We need to make sure that the

specified file exists ς ƛŦ ƛǘ ŘƻŜǎƴΩǘΣ ǿŜ ƴŜŜŘ ǘƻ ǘƘǊƻǿ ǘƘŜ FILE_FILENAME_INVALID exception so that

EViews knows what to display to the user.

Since our example uses a small text file, we keep things simple by loading the entire text file into

memory. We then count the number of lines in the file.

Sequential Searches

When EViews searches through a database to retrieve information about the objects it contains, results

are retrieved sequentially (using multiple function calls), not all at once. EViews will first make a call to

the database class to initialize the search, then make additional calls to return the results for each

object, one at a time. EViews may also abort a search if the user has chosen to cancel the search while

the results are still being retrieved.

In our example, since we specified the "all" and "attr" browsing methods in GetAttributes

(search=all|attr ύΣ ǿŜΩƭƭ ƴŜŜŘ ǘƻ Ŧƛƭƭ ƻǳǘ ǘƘŜ SearchByAttributes and SearchNext methods.

SearchByAttributes

Public Sub SearchByAttributes(ByVal searchExpression As String , _

 ByVal attrNames As String) _

 Implements EViewsEdx.IDatabase.SearchByAttributes

 'just reset our text array ind ex pointer...

 miLineIndex = 0

End Sub

EViews will first call SearchByAttributes to allow the database to prepare the list of database

objects to return. Then EViews will call SearchNext to retrieve the name and attributes of each object

in the list until it has retrieved the full list.

Typically, for small databases, searchExpression and attrNames can be ignored. This is because

EViews always performs its own filtering of objects returned during a search so we can simply return

every object to EViews and let it do all the filtering work. Large server-based databases may want to

limit the number of objects returned to EViews by using the searchExpression to select objects and

by using attrNames to only retrieve attributes that were actually requested bȅ ǘƘŜ 9±ƛŜǿǎ ǳǎŜǊ όǿŜΩƭƭ

do this later in the Generic SQL Server example).

In our current ŜȄŀƳǇƭŜΣ ǎƛƴŎŜ ƻǳǊ ŘŀǘŀōŀǎŜ ƛǎ ǾŜǊȅ ǎƳŀƭƭΣ ǿŜΩƭƭ Ƨǳǎǘ ƛƎƴƻǊŜ ǘƘŜǎŜ ǇŀǊŀƳŜǘŜǊǎ ŀƴŘ ǊŜǘǳǊƴ

everything.

The only thing our function needs to do is to reset the mLineInde x value so that the first call to

SearchNext will always start at the beginning of our array of lines.

SearchNext

Public Function SearchNext(ByRef objectId As String , _

 ByRef attr As Object) As Boolean _

 Implements EViewsEdx.IDatabase.SearchNext

 'check if we're already at the end of the text file...

 If miLineIndex >= miLineCount Then

 Return False

 End If

 'skip to the next non - blank line...

 Do While (maLines(miLineIndex).Length = 0)

 miLineIndex += 1

 If miLineIndex >= miLineCount Then

 'we've reached the end of the text file...

 Return False

 End If

 Loop

 'parse the text line for the object attributes

 'and set the object name

 BuildAttributeString(maLines(miLineIndex), attr, objectId)

 'increment the line pointer to the next line...

 miLineIndex += 1

 Return True

End Function

Every time SearchNext is called, it retrieves the current line from the text array in memory, then

extracts the object name and builds the attribute string (with the help of the BuildAttributeString helper

function):

Private Sub BuildAttributeString(ByVal vsLine As String , _

 ByRef attr As Object , _

 Optional ByRef vsName As String = "")

 Dim laObject() As String = Split(vsLine, " | ")

 attr = ""

 'name

 vsName = laObject(FieldOrder.Name)

 'freq

 If laObject(FieldOrder.Freq) > "" Then

 attr &= " freq= " & laObject(FieldOrder.Freq)

 End If

 'type

 If laObject(FieldOrder.Type) > "" Then

 If CStr (attr).Length > 0 Then

 attr &= " , "

 End If

 attr &= " type= " & laObject(FieldOrder.Type)

 End If

 'start

 If laObject(FieldOrder.Start) > "" Then

 If CStr (attr).Length > 0 Then

 attr &= " , "

 End If

 attr &= " start= " & laObject(FieldOrder.Start)

 End If

 'obs

 If CStr (attr).Length > 0 Then

 attr &= " , "

 End If

 If laObject(FieldOrder.Data) > "" Then

 attr &= " obs= " & Split(laObject(FieldOrder.Data), " , ").Count.ToString

 Else

 attr &= " obs=0 "

 End If

End Sub

The attributes are returned to EViews in a single string containing a comma separated list of attributes.

See Appendix A for a discussion of this and other formats that could have been used.

We also increment the mLineIndex ǇƻƛƴǘŜǊ ǎƻ ǘƘŀǘ ǿŜΩǊŜ ǊŜŀŘȅ for the next call to SearchNext and

then return True to indicate that we have a result. If we encounter the end of the file, we return

False to indicate to EViews that the search is complete.

Interim Build Check

At this point, we are ready to test our new Custom Text Database Extension with EViews. First, build the

project, checking that all registration steps completed successfully. (Failures to register objects will

typically be caused by insufficient user permissions. You can resolve this by running the development

environment as an administrator or by registering the objects yourself outside the development

environment using an administrator account). Once the build completes without errors, launch a copy of

EViews 8.1 and register our new Database Extension by typing the following into the EViews command

window:

edxadd EdxSamples .CustomDbMgr

This registers our new Database Manager object with EViews (by supplying its ProgId) and makes it

available for use. (Note that there is a matching command edxdrop that can be used to unregister a

database extension.)

To test our new database format, we simply tell EViews to open our test file as a database:

dbopen c: \ files \ test.cdb

You should see an empty database window. Click the All button to display the three items that are in our

custom text file:

Debugging CustomEDX

You may find it extremely useful to setup your debugging environment in Visual Studio to run EViews 8.1

every time you press the Debug button in Visual Studio. Right-click the "EdxSamples" project and click

on "Properties". Click on the "Debug" tab on the left and select the "Start external program" radio

button and type in the full path to your EViews7:

You can now place breakpoints in the methods of CustomDbMgr and CustomDb to see when EViews

calls the functions and to examine what values are being passed in and out of the functions.

In order to support exporting of an object in our database to an EViews database or workfile, we need to

add code to ReadObjectAttributes and ReadObject :

ReadObjectAttributes

ReadObjectAttributes is used by EViews to quickly get attribute data for an object without having

to read any data values.

Lƴ ƻǳǊ ŜȄŀƳǇƭŜΣ ǘƘƛǎ ŘƻŜǎƴΩǘ ǎŀǾŜ ƳǳŎƘ ƛƴ ǘŜǊƳǎ ƻŦ ǇŜǊŦƻǊƳŀƴŎŜ όōŜŎŀǳǎŜ our file is small and all the

data in our file has already been loaded into memory), but more complicated databases may benefit

from this separation. CƻǊ ƴƻǿΣ ǿŜΩƭƭ Ƨǳǎǘ ǘƘǊƻǿ ǘƘŜ bƻǘLƳǇƭŜƳŜƴǘŜŘ9ȄŎŜǇǘƛƻƴ ǿƘƛŎƘ ǿƛƭƭ cause EViews

to call ReadObject instead.

Public Sub ReadObjectAttributes(ByVal objectId As String , _

 ByVal destFreqInfo As String , _

 ByRef attr As Object) _

 Implements EViewsEdx.IDatabase.ReadObjectAttributes

 Throw New NotImplementedException

End Sub

ReadObject

ReadObject is expected to retrieve all attributes and data values for the specified object:

Public Sub ReadObject(ByVal objectId As String , _

 ByVal destFreqInfo As String , _

 ByRef attr As Object , _

 ByRef vals As Object , _

 ByRef ids As Object) _

 Implements EViewsEdx.IDatabase.ReadObject

 For i As Integer = LBound(maLines) To UBound(maLines)

 If maLines(i).Length > 0 Then

 Dim laObject() As String = Split(maLines(i), " | ")

 If UCase(laObject(FieldOrder.Name)) = UCase(objectId) Then

 'found it

 BuildAttributeString(maLines(i), attr)

 'get the data vals...

 vals = Split(laObject(FieldOrder.Data), " , ")

 Return

 End If

 End If

 Next

 'the object doesn't exist in our database

 Throw New COMException("" , EViewsEdx.ErrorCode.RECORD_NAME_INVALID)

End Sub

This method simply searches for the line containing the name in objectId , then builds the attribute

string and parses out the data values into the vals array. If we cannot find the object name, we throw

an exception to tell EViews why we failed.

Testing ReadObject

We can now test the Read methods by attempting to export an object from our database into a new

workfile. Run EViews and open our database:

dbopen (type=customdb) c: \ files \ test.cdb

Click the "All" button to display all available objects in the database. Right-click the icon for the series X

and select "9ȄǇƻǊǘ ǘƻ ǿƻǊƪŦƛƭŜΧ" and click "OK" on the Database Export dialog.

You should be able to confirm that the series X has been created in the new workfile and that it contains

the 10 observations that were defined in the test.cdb text file.

Summary

We now have a completed Custom Database Extension that supports simple read-only access to data

stored in a text file. We will now proceed to our second example that extends this to support writing to

the database and also includes user configurable database preferences.

XML Folder Based Database
Our second example will be another file-based database, but each object will be stored in a separate

XML file. The folder containing all of these XML files will represent the new database. Each XML file will

contain both the data and the attributes for a single object. To simplify the XML generation and parsing,

this example will use the standard System.Data.Dataset class available in the .NET Framework.

The complete source code for this example is provided in the EdxSamples project available at
http://www.eviews.com/EViews8/Enterprise/EDXeg.html. You can examine and modify this to suit your
own needs. You may find it useful to follow the steps below as you read through the discussion so you
can better understand how the example project was created.

http://www.eviews.com/EViews8/Enterprise/EDXeg.html

Create the XML folder

In the "EdxSamples" project, we will create a new folder named "XML" to group these files together.

Right-click the "EdxSamples" project, then select "Add", then "New Folder". Name the folder "XML".

Create the Database Manager class

Right click the "XML" folder and select "Add", then "Class" from the menu. In the Add New Item dialog,

select the "Class" template and rename the file to "XmlDbMgr.vb", then click Add.

As in the previous example, we need to tell Visual Studio to make this class visible to COM clients and

specify its GUID value. ²ŜΩƭƭ ŀƭǎƻ ǘŜƭƭ ±ƛǎǳŀƭ {ǘǳŘƛƻ not to generate a custom interface definition for this

class as it is not needed. To do this, copy and paste the following lines in the XmlDbMgr.vb file above the

"Public Class" line:

Imports System.Runtime.InteropServices

<Guid(" XXXXXXXX- XXXX- XXXX- XXXX- XXXXXXXXXXXX") , _

 ClassIn terface(ClassInterfaceType.None), _

 ComVisible(True)> _

Public Class XmlDbMgr

This class will need to implement the EViewsEdx.IDatabaseManager interface. Below the "Public Class"

line, add the following:

Public Class XmlDbMgr

 Implements EViewsEdx.IDatabaseManager

After adding this line, .NET will automatically add empty versions of each function that is part of our

IDatabaseManager interface.

¢ƘŜ ŦƛǊǎǘ ƳŜǘƘƻŘ ǿŜΩƭƭ ŎƻŘŜ ƛǎ ǘƘŜ DŜǘ!ǘǘǊƛōǳǘŜǎ ƳŜǘƘƻŘΦ

GetAttributes

Following the same pattern as in the previous example, we return a list of important attributes about

the database in a single comma delimited string.

Public Function GetAttributes(ByVal clientInfo As String) As Object _

 Implements EViewsEdx.IDatabaseManager.GetAttrib utes

 Dim lsAtts As String = " name=XmlEDX, description=Xml EDX Database, " & _

 " type=xmledx, search=all|attr, searchattr=name, " & _

 " attr type=strarray, dbidlabel=Folder "

 Return lsAtts

End Function

Most of the attributes are the same as for the previous example, but we no longer specify a file

extension since our database identifier will now be a directory. Note: One important side effect of not

having an extension attribute is that when a user opens an instance of our XML database, it will not

ŀǇǇŜŀǊ ƛƴ ǘƘŜ CƛƭŜ ƳŜƴǳΩǎ aƻǎǘ wŜŎŜƴǘƭȅ ¦ǎŜŘ όaw¦ύ ƭƛǎǘƛƴƎΦ hƴƭȅ ŦƛƭŜ-based databases that have a file

extension and those defined in the EViews Database registry (with a short name) will appear in the MRU

listing. We have also removed the nocreate and readonly attributes since we will also support writing to

the database in this example.

The attrtype =strarray attribute tells EViews to send us object attributes as a string array. Since we

will store these attributes into a DataTable, this will make parsing the attributes much easier in the

WriteObject method.

The dbidlabel attribute tells EViews to use a custom value (in our case "Folder") as the label next to

the Database ID field in the Database Open and Database Create dialogs. This will help users know what

to put into the field when performing a dbopen or dbcreate .

Please refer to Appendix B for details on Database Manager attributes.

bƻǿ ǘƘŀǘ ǿŜΩǾŜ ǘƻƭŘ 9±ƛŜǿǎ the general details of our database format, our manager needs to be able

to return a specific database to EViews.

OpenDb

Whenever an EViews user opens or creates a database in our format, EViews calls the OpenDb method

on IDatabaseManager to retrieve an IDatabase interface. The IDatabase interface represents a

"connection" to our database and will be used by EViews to search our database and to read and write

objects to our database.

Public Function OpenDb(ByVal databaseId As String , _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode, _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As EViewsEdx.IDatabase _

 Implements EViewsEdx.IDatabaseManager.OpenDb

 Return New XmlDb(databaseId, oc_mode, rw_mode)

End Function

Before we can use this method, we will need to define the XmlDb class that will be returned by this

method.

Create the Database class

Like we did before, right click the "XML" folder in the Solution Explorer and select "Add", then "Class"

from the menu. In the Add New Item dialog, select the "Class" template and rename the file to

"XmlDb.vb", then click Add.

As before, this class does not need to be ComVisible as EViews will never instantiate it directly.

XmlDb will need to implement the EViewsEdx.IDatabase interface in order for it to be usable by EViews:

Imports System.Runtime.Int eropServices

Public Class XmlDb

 Implements EViewsEdx.IDatabase

After adding this line, .NET will automatically add empty versions of each function that is required by our

IDatabase interface. ²ŜΩƭƭ ōŜƎƛƴ ōȅ ŀŘŘƛƴƎ ǎƻƳŜ Ŏƭŀǎǎ ƭŜǾŜƭ ǾŀǊƛŀōƭŜǎΥ

'class l evel variables

Private msDatabaseId As String

Private mOpenCreateMode As EViewsEdx.OpenCreateMode

Private mReadWriteMode As EViewsEdx.ReadWriteMode

Private mSearchExpression As String

Private mFiles() As String

Private mUpper As Integer

Private mIndex As Integer

Also add a new class constructor:

'new constructor

Public Sub New(ByVal databaseId As String , _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode)

 MyBase.New()

 msDatabaseId = databaseId

 mOpenCreateMode = oc_mode

 mReadWriteMode = rw_mode

 mUpper = 0

 mIndex = 0

 Dim lbDirExists As Boolean = System.IO.Directory.Exists(msDatabaseId)

 Select Case oc_mode

 Case EViewsEdx.OpenCreateMode.FileOpen

 If Not lbDirExists Then

 Throw New COMException(String .Empty, _

 EViewsEdx.ErrorCode.FILE_FILENAME_INVALID)

 End If

 Case EViewsEdx.OpenCreateMode.FileCreate

 If lbDirExists Then

 Throw New COMException(String .Empty, _

 EViewsEdx.ErrorCode.FILE_FILENAME_IN_USE)

 Else

 'create the new subdirectory...

 Util.CreateSubDirectory(msDatabaseId)

 End If

 Case EViewsEdx.OpenCreateMode.FileOverwrite

 If lbDirExists Then

 'delete the directory first...

 System.IO.Directory.Delete(msDataba seId, True)

 lbDirExists = False

 End If

 'create the new subdirectory...

 Util.CreateSubDirectory(msDatabaseId)

 Case EViewsEdx.OpenCreateMode.FileOpenCreate

 'create if not already existing

 If Not lbDirExists Then

 Util.CreateSubDirectory(msDatabaseId)

 End If

 End Select

End Sub

First, we save all passed in parameter values into member variables so we can refer to them later:

databaseId will contain the path to the folder, oc_mode and rw_mode will tell us how our database

was opened.

Since this database supports creation, our code may need to make a new folder or delete an existing

folder depending on the oc_mode passed in.

When we encounter an error, we throw a COMException object that uses a pre-defined EViews error

constant so that EViews will know how to respond to that error. For example, if oc_mode is FileOpen

ŀƴŘ ǘƘŜ ǎǇŜŎƛŦƛŜŘ ŦƻƭŘŜǊ ŘƻŜǎƴΩǘ ŜȄƛǎǘΣ ǿŜ ǘƘǊƻǿ ŀ FILE_FILE NAME_INVALID COMException which

will instruct EViews to display the "Database not found" error message. The API documentation for the

OpenDb function contains a list of exceptions that may be relevant.

CƻǊ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ǿŜ ŘƻƴΩǘ ōƻǘƘŜǊ ƭƻƻƪƛƴƎ ŦƻǊ ŀƴȅ ƻōƧŜct files in the specified folder until a Search

request is made by the user.

Util Class

You may have noticed that we make use of a class named "Util" that contains some global utility

functions. Create a new Util class somewhere in your project and place the following code into that

class:

Imports System.IO

Public Class Util

 Public Shared Function myCInt(ByRef roValue As Object) As Integer

 Try

 If roValue Is DBNull.Value Then

 Return 0

 End If

 Return CInt (roValue)

 Catch ex As Exception

 Return 0

 End Try

 End Function

 Public Shared Sub CreateSubDirectory(ByVal vsPath As String)

 Dim di As New System.IO.DirectoryInfo(vsPath)

 If di.Exists Then

 Return

 End If

 di.Create()

 End Sub

End Class

SearchByAttributes

Public Sub SearchByAttributes(ByVal searchExpression As String , _

 ByVal attrNames As String) _

 Implements EViewsEdx.IDatabase.SearchByAttributes

 'store the search expression

 mSearchExpression = searchExpression

 mFiles = System.IO.Directory.GetFiles(_

 msDatabaseId, _

 mSearchExpression & " . xml ")

 'reset any previous search pointer...

 mUpper = UBound(mFiles)

 mIndex = 0

End Sub

Remember that EViews will first call SearchByAttributes to allow the database to prepare a list of

database objects to return. EViews will then call SearchNext repeatedly to retrieve the name and

attributes of each object in the list until it has retrieved the full list.

For this example, searching the database will involve iterating over the XML files contained in the

directory specified by the databaseId .

Since we included SEARCHATTR=name in GetAttributes , the searchExpression argument will

contain a string that represents a name pattern (e.g. "* " or "gdp*"). We will use this expression in our

call to Directory.GetFiles to return only those objects whose name fits this pattern. We store the

results of this search in our mFiles variable.

We also reset the mIndex value so that the first call to SearchNext after calling this function will

always start at the beginning of the directory listing.

SearchNext

Public Function SearchNext(ByRef objectId As String , _

 ByRef attr As Object) As Boolean _

 Implements EViewsEdx.IDatabase.SearchNext

TryAgain:

 If mIndex > mUpper Then

 Return False

 End If

 Dim temp As String = mFiles(mIndex)

 mIndex += 1

 Dim fi As New System.IO.FileInfo(temp)

 temp = fi.Name

 Dim pos As Integer = InStrRev(temp, " . ")

 If pos > 0 Then

 temp = Mid(temp, 1, pos - 1)

 End If

 objectId = temp

 'try to get the attributes...

 Dim liSecondDimSize As Integer

 Try

 Dim ds As New DataSet

 Dim dtAttributes As DataTable

 Dim dtMeta As DataTable

 Dim dtData As DataTable

 ds.ReadXml(fi.FullName)

 dtAttributes = ds.Tables(" Attributes ")

 dtMeta = ds.Tables(" Meta ")

 dtData = ds.Tables(" Data ")

 If dtAttributes Is Nothing Or dtMeta Is Nothing _

 Or dtData Is Nothing Then

 GoTo TryAgain

 End If

 If dtAttributes.Rows.Count > 0 Then

 attr = GetAttributesAsObject (dtAttributes)

 End If

 'verify that we have a meta second dim size value as well

 If dtMeta.Rows.Count > 0 Then

 liSecondDimSize = Util.myCInt(dtMeta.Rows(0).Item(" SecondDimSiz e"))

 End If

 Return True

 Catch ex As Exception

 'we encountered a file that wasn't a valid dataset xml

 'skip it and try the next one...

 GoTo TryAgain

 End Try

End Function

Every time SearchNext is called, it retrieves the next object file in mFiles .

In our example, the object file is an XML representation of an object in the database. To verify this, we

attempt to load it into a new Dataset object. Once loaded, we retrieve any object attributes that were

previously saved using a helper method named GetAttributesAsObject , and return that in attr .

Private Function GetAttributesAsObject (ByRef rdtAttributes As DataTable) _

 As Object

 Dim liColCount As Integer = rdtAttributes.Columns.Count

 Dim loArray(0 To (liColCount - 1), 0 To 1) As String

 For i As Integer = 0 To (liColCount - 1)

 loArray(i, 0) = rdtAttributes.Columns(i).ColumnName

 loArray(i, 1) = rdtAttributes.Rows(0).Item(loArray(i, 0))

 Next

 Return loArra y

End Function

If a valid object is found, the function returns TRUE. Once we reach the end of mFiles , we return FALSE

to tell EViews that we are done.

Interim Build Check

At this point, we can test our new Database Extension with EViews. Build the project, checking that all

registration steps completed successfully. Once the build completes without errors, launch a copy of

EViews 8.1 and register our new Database Extension by typing the following into the EViews command

window:

edxadd EdxSamples .XmlDbMgr

This registers our new Database Manager object with EViews and makes it available for use.

To test our new database format, first create an empty subdirectory somewhere on your computer (e.g.

c:\ temp\TestDir). Then in EViews, call

dbop en(type=xmledx) c: \ temp \ testdir

bƻǘŜ ǘƘŀǘ ǿŜ ƴŜŜŘ ǘƻ ǳǎŜ ǘƘŜ ΨǘȅǇŜҐΩ ƻǇǘƛƻƴ ǎƛƴŎŜ ƻǳǊ ŘŀǘŀōŀǎŜ Ŏƻƴǎƛǎǘǎ ƻŦ ŀƴ ŜƴǘƛǊŜ ŘƛǊŜŎǘƻǊȅ ǎƻ ƛǘ ŘƻŜǎ

not have a simple file extension. You should see an empty database window.

If you click the All button, you should see zero objects returned since our directory is initially empty.

You will notice that because we did not define an extension attribute for our database (see

GetAttributes), this database does not appear under the CƛƭŜ ƳŜƴǳΩǎ aƻǎǘ wŜŎently Used (MRU) file

listing. This is because without a file extension, EViews does not have a way to determine the database

type from the path alone. Furthermore, all server-based database extensions (such as our SQL example

below) do not appear in the MRU listing as well. The only way for these databases to show up in the

listing is to be pre-defined in the EViews Database Registry with a short name (which can be done during

the DBOPEN dialog).

WriteObject

We need some test objects to read from our database. The quickest way to do this is to allow EViews to

write objects into our database. Supporting write simply means we have to code the

IDatabase::WriteObject method.

First, ǿŜΩƭƭ ǿǊƛǘŜ a helper function to determine the size of the object arrays that are passed into

WriteObject:

Public Sub DetermineSize(ByRef roObj As Object , _

 ByRef riFirst As Integer , _

 ByRef riSecond As Integer)

 If roObj I s Nothing Then

 riFirst = 0

 riSecond = 0

 Return

 End If

 Try

 riFirst = UBound(roObj, 1) - LBound(roObj, 1) + 1

 Catch ex As Exception

 riFirst = 0

 End Try

 Try

 riSecond = UBound(roObj, 2) - LBound(roObj, 2) + 1

 Catch ex As Exception

 riSecond = 0

 End Try

End Sub

Now, WriteObject:

Public Sub WriteObject(ByRef objectId As String , _

 ByVal attr As Object , _

 ByVal vals As Object , _

 ByVal ids As Object , _

 ByVal overwriteMode As EViewsEdx.WriteType) _

 Implements EViewsEdx.IDatabase.WriteObject

 Dim lsFilePath As String = msDatabaseId & " \ " & LCase(objectId) & " .xml "

 Select Case overwriteMode

 Case EViewsEdx.WriteType.WriteProtect

 'if the file already exists, don't overwrite it...

 If System.IO.File.Exists(lsFilePath) Then

 Throw New COMException("" ,

EViewsEdx.ErrorCode.RECORD_NAME_IN_USE)

 End If

 Case EViewsEdx.WriteType.WriteOverwrite

 If System.IO.File.Exists(lsFilePath) Then

 System.IO.File.Delete(lsFilePath)

 End If

 End Select

 Dim ds As New DataSet

 Dim dt As New DataTable

 'save the attributes

 dt.TableName = " Attributes "

 For i As Integer = LBound(attr) To UBound(attr)

 dt.Columns.Add(attr(i, 0))

 Next

 Dim dr As DataRow = dt.NewRow

 For i As Integer = LBound(attr) To UBound(attr)

 dr(attr(i, 0)) = attr(i, 1)

 Next

 dt.Rows.Add(dr)

 ds.Tables.Add(dt)

 'save our meta data

 Dim liFirstDim As Integer

 Dim liSecondDim As Integer

 DetermineSize(vals, liFirstDim, liSecondDim)

 dt = New DataTable(" Meta ")

 dt.Columns.Add(" SecondDimSize ")

 dr = dt.NewRow

 dr(" SecondDimSize ") = liSecondDim

 dt.Rows.Add(dr)

 ds.Tables.Add(dt)

 dt = New DataTable(" Data ")

 If ids IsNot Nothing Then

 dt.Columns.Add(" id ")

 End If

 If liSecondDim > 0 Then

 For y As Integer = 1 To liSecondDim

 dt.Columns.Add(" value " & y.ToString)

 Next

 Else

 dt.Columns.Add(" value ")

 End If

 Dim lowerbound As Integer = LBound(vals)

 Dim upperbound As Integer = UBound(vals)

 For i As Integer = lowerbound To upperbound

 dr = dt.NewRow

 If ids IsNot Nothing Then

 dr(" id ") = ids(i)

 End If

 If liSecondDim = 0 Then

 dr(" value ") = vals(i)

 Else

 For y As Integer = 1 To liSecondDim

 dr(" value " & y.ToString) = vals(i, y - 1)

 Next

 End If

 dt.Rows.Add(dr)

 Next

 ds.Tables.Ad d(dt)

 'now save this dataset as xml...

 ds.WriteXml(lsFilePath)

End Sub

Our WriteObject method will store all object attributes, values, and ids (if available) into a single

Dataset object that contains three DataTables. The first DataTable is named "Attributes" and will contain

a column for each attribute name. This table will only contain a single row that stores the attribute

values for each name (which is returned by EViews as a string array because we specified

attrtype= strarray in GetAttributes). The second DataTable is named "Meta" and will contain a

single column named SecondDimSize . We store the size of the second dimension of the vals array (if

it has one) so that when we read it back later, we know how many columns to read in (so that we can

support matrix objects).

The third table is named "Data" and will contain a column named "id" (if ids were passed in) and then a

value column for each column in the vals array. The number of rows in the DataTable will match the

size of the ids and vals arrays that are passed in by EViews.

Once everything is placed into the new DataSet, we call WriteXml to save the dataset using the

filename we generated from the passed in objectId .

Testing WriteObject

bƻǿ ǘƘŀǘ ǿŜΩǾŜ ŎƻƳǇƭŜǘŜŘ ǘƘŜ WriteObject method, we can run EViews and put various objects into

our new database. Run EViews and run the following commands:

create u 10

series x = rnd

series y = rnd

Next, call dbopen again to open our database:

dbopen (type=xmledx) c: \ temp \ TestDir

Now drag and drop series X and Y onto our database.

Confirm that you have two new XML files in the database folder.

Now that we have objects in our database, we can code the ReadObjectAttributes and

ReadObject methods to support reading.

ReadObjectAttributes

ReadObjectAtt ributes is used by EViews to quickly get attribute data for an object without having

to read in any data values. As for our previous example, ǘƘƛǎ ŘƻŜǎƴΩǘ ǎŀǾŜ ƳǳŎƘ ƛƴ ǘŜǊƳǎ ƻŦ ǇŜǊŦƻǊƳŀƴŎŜ

hereΣ ǎƻ ǿŜΩƭƭ Ƨǳǎǘ ǘƘǊƻǿ ǘƘŜ bƻǘLƳǇƭŜƳŜƴǘŜŘ9ȄŎŜǇǘƛƻƴ ǿƘƛŎƘ ǿƛƭƭ cause EViews to call ReadObject for

the attributes instead.

Public Sub ReadObjectAttributes(ByVal objectId As String , _

 ByVal defaultFreq As String , _

 ByRef attr As Object) _

 Implement s EViewsEdx.IDatabase.ReadObjectAttributes

 Throw New NotImplementedException()

End Sub

ReadObject

ReadObject is called to retrieve all attributes, data values and observation ids for the specified object:

Public Sub ReadObject(ByVal objectId As String , _

 ByVal defaultFreq As String , _

 ByRef attr As Object , _

 ByRef vals As Object , _

 ByRef ids As Object) _

 Implements EViewsEdx.IDatabase.ReadObject

 Dim lsFi lePath As String = msDatabaseId & " \ " & _

 LCase(objectId) & " . xml "

 If Not System.IO.File.Exists(lsFilePath) Then

 Throw New COMException("" , EViewsEdx.ErrorCode.RECORD_NAME_INVALID)

 End If

 Dim ds As New DataSet

 Dim dtAttributes As DataTable

 Dim dtMeta As DataTable

 Dim dtData As DataTable

 Dim liSecondDimSize As Integer = 0

 Try

 ds.ReadXml(lsFilePath)

 dtAttributes = ds.Tables(" Attributes ")

 dtMeta = ds.Tables(" Meta ")

 dtData = ds.Tables(" Data ")

 If dtAttributes.Rows.Count > 0 Then

 attr = GetAttributesAsObject (dtAttributes)

 End If

 If dtMeta.Rows.Count > 0 Then

 liSecondDimSize = Util.myCInt(dtMeta.Rows(0).Item(" SecondDimSize "))

 End If

 If liSecondDimSize = 0 Then

 ReDim vals(0 To dtData.Rows.Count - 1)

 Else

 ReDim vals(0 To dtData.Rows.Count - 1, 0 To (liSecondDimSize - 1))

 End If

 If dtData.Columns.Contains(" ids ") Then

 ReDim ids(0 To dtData.Rows.Count - 1)

 End If

 Dim i As Integer = 0

 For Each dr As DataRow In dtData.Rows

 If liSecondDimSize = 0 Then

 vals(i) = dr(" value ")

 Else

 For y As Integer = 1 To liSecondDimSize

 vals(i, y - 1) = dr(" value " & y.ToString)

 Next

 End If

 If dtData.Columns.Contains(" ids ") Then

 ids(i) = dr(" id ")

 End If

 i += 1

 Next

 Catch ex As Exception

 Throw New COMException(" Specified xml file was not valid. ")

 End Try

End Sub

This method simply loads the specific object XML file and returns the attributes stored in the

"Attributes" DataTable into the attr parameter. It then sizes and fills the vals and ids parameters

with the associated data from the "Data" DataTable.

Testing ReadObject

We can now test the Read methods by attempting to export the X and Y objects from our database into

a new workfile. Run EViews and open our database:

dbopen (type=xmledx) c: \ temp \ TestDir

Click the "All" button to display all available objects in the database. Right-click the X series object and

select "9ȄǇƻǊǘ ǘƻ ǿƻǊƪŦƛƭŜΧ" and click "OK" on the Database Export dialog.

You should be able to confirm that the X series object is created in the new workfile correctly and that it

contains the 10 observations that were generated randomly during the Write test.

Supporting User Configurable Preferences

We will now add support for a database preference that is configurable by the user. In our example, we

will let the user change the name of the extension for the object files. The default value will be ".xml"

but they can change it to any other value.

First, we will need a dialog that the user can interact with to view and edit this value. Right-click the

"XML" folder and click Add-Ҕ²ƛƴŘƻǿǎ CƻǊƳΧ. Select Windows Forms in the left tree view and then

select Dialog on the right. Name the form XmlPreferences.vb, and click Add:

Add a label and a textbox (named txtObjectExt) control:

The code behind for this form should look like this:

Imports System.Windows.Forms

Public Class XmlPreferences

 Private Sub OK_Button_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles OK_Button.Click

 txtObjectExt .Text = Trim(txtObjectExt.Text)

 If txtObjectExt.Text.StartsWith(" . ") Then

 txtObjectExt.Text = Mid(txtObjectExt.Text, 2)

 End If

 If txtObjectExt.Text = "" Then

 MsgBox(" You must specify a non - blank object file extension

value. " , MsgBoxStyle.Critical)

 Return

 End If

 Me.DialogResult = System.Windows.Forms.DialogResult.OK

 Me.Close()

 End Sub

 Private Sub Cancel_Button_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles Cancel_Button.Click

 Me.DialogResult = System.Windows.Forms.DialogResult.Cancel

 Me.Close()

 End Sub

End Class

¢ƻ ǳǎŜ ǘƘƛǎ ŦƻǊƳΣ ǿŜΩƭƭ ŀŘŘ ŎƻŘŜ ǘƻ ǘƘŜ ConfigurePreferences method in the XmlDbMgr class. But

ōŜŦƻǊŜ ǿŜ Řƻ ǘƘŀǘΣ ǿŜΩƭƭ ƴŜŜŘ ŀ Ŏƭŀǎǎ ǘƻ ǎǘƻǊŜ ƻǳǊ ǇǊŜŦŜǊŜƴŎŜǎΦ Lƴ ǘƘƛǎ ŎŀǎŜ ǿŜΩǊŜ ƻƴƭȅ ǎǘƻǊƛƴƎ ŀ ǎƛƴƎƭŜ

string so this class will be minimal. Create a new class named XmlPrefs:

Public Class XmlPrefs

 Private msObjectFileExt As String

 Public Sub New()

 msObjectFileExt = " xml "

 End Sub

 Public Property ObjectFileExt() As String

 Get

 Return msObjectFileExt

 End Get

 Set (ByVal value As String)

 msObjectFileExt = value

 End Set

 End Property

End Class

²ŜΩƭƭ ŎǊŜŀǘŜ ŀ ƳŜƳōŜǊ ǾŀǊƛŀōƭŜ ƛƴ ƻǳǊ ·Ƴƭ5ōaƎǊ Ŏƭŀǎǎ ǘƘŀǘ ǳǎŜǎ ǘƘƛǎ ŎƭŀǎǎΥ

Public Class XmlDbMgr

 Implements EViewsEdx.IDatabaseManager

 Private mDbPref As New XmlPrefs

ConfigurePreferences

WŜΩƭƭ ŎƻŘŜ ConfigurePreferences to display the form, then save any changed values back into our

XmlPrefs class and also into the prefs parameter:

Public Function ConfigurePreferences(ByVal server As String , _

 ByVal username As String , _

 ByVal password As String , _

 ByRef prefs As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.ConfigurePreferences

 Dim frm As New XmlPreferences

 frm.txtObjectExt.Text = LCase(mDbPref.ObjectFileExt)

 Dim result As System.Windows.Forms.DialogResult = frm.ShowDialog()

 If result = Windows.Forms.DialogResult.OK Then

 mDbPref.ObjectFileExt = LCase(frm.txtObjectExt.Text)

 prefs = " ObjectFileExt= " & mDbPref.ObjectFileExt

 Return True

 End If

 Return False

End Function

Returning True from this method will instruct EViews to save the new prefs value into the EViews INI

file of the current user. The next time this Database Manager is loaded, it will be initialized with this

prefs value by a call to SetPreferences :

SetPreferences

Public Sub SetPreferences(ByVal prefs As String) _

 Implements EViewsEdx.IDatabaseManager.SetPreferences

 Dim atts() As String = Split(prefs, " , ")

 Dim nm As String

 Dim val As String

 Dim pos As Integer

 For Each att As String In atts

 If att > "" Then

 pos = InStr(att, " =")

 If pos > 0 Then

 nm = Mid(att, 1, pos - 1)

 val = Mid(att, pos + 1)

 Else

 nm = att

 val = att

 End If

 Select Case LCase(nm)

 Case " objectfileext "

 mDbPref.ObjectFileExt = val

 End Select

 End If

 Next

End Sub

The only thing left to do now is to use this new user configurable option in our code to read and write

ƻōƧŜŎǘǎ ƛƴ ƻǳǊ ·Ƴƭ5ō ŎƭŀǎǎΦ ¢ƻ Řƻ ǘƘƛǎΣ ǿŜΩƭƭ ŎƘŀƴƎŜ ƻǳǊ ·Ƴƭ5ō ŎƻƴǎǘǊǳŎǘƻǊ ǘƻ ǊŜŎŜƛǾŜ ŀ ǊŜŦŜǊŜƴŎŜ ǘƻ ǘƘŜ

mDbPref member variable maintained by XmlDbMgr so that XmlDb can read the current values. To

ƪŜŜǇ ǘƘŜ ǊŜŦŜǊŜƴŎŜΣ ǿŜΩƭƭ ƴŜŜŘ ŀƴƻǘƘŜǊ mDbPref member variable in XmlDb:

Private mDbPref As XmlPrefs

Constructor changes:

Public Sub New(ByVal databaseId As String, _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode, _

 ByRef roDbPref As XmlPrefs)

 MyBase.New()

 msDatabaseId = databaseId

 mOpenCreateMode = oc_mode

 mReadWriteMode = rw_mode

 mDbPref = roDbPref

Modify OpenDb to pass in mDbPref :

Public Function OpenDb(ByVal databaseId As String, _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode, _

 ByVal server As String, ByVal username As Str ing, _

 ByVal password As String) As EViewsEdx.IDatabase _

 Implements EViewsEdx.IDatabaseManager.OpenDb

 Return New XmlDb(databaseId, oc_mode, rw_mode , mDbPref)

End Function

Now, wherever we used a hard coded value for ".xml ", we replace this with ". " &

mDbPref.ObjectFileExt .

These changes should be made to ReadObject , SearchByAttributes , and WriteObject :

For example, in SearchByAttributes :

Public Sub SearchByAttributes(ByVal searchExpression As String, _

 ByVal attrNames As String) _

 Implements EViewsEdx.IDatabase.SearchByAttributes

 'store the search expression

 mSearchExpression = searchExpression

 mFiles = System.IO.Directory.GetFiles(_

 msDatabaseId, _

 mSearchExpression & " . " & mDbPref.ObjectFileExt)

Testing ConfigurePreferences

Once compiled, run EViews and open our database:

dbopen (type=xmledx) c: \ temp \ TestDir

Once opened, click the View button and select "tǊŜŦŜǊŜƴŎŜǎΧ":

To make sure this Object Extension value is being saved properly, change it to something else (e.g.

"evx") and click OK. Restart EViews and then go back to the dialog to see if it returns properly.

Changing the extension will not automatically refresh the display of objects in the Database window in

EViews. You will have to hit the All button to do a refresh.

Now the only things left to implement for a fully functional database are the DeleteObject ,

CopyObject , and RenameObject methods.

DeleteObject

DeleteObject just does a simple file delete on the specified object:

Public Sub DeleteObject(ByVal objectId As String) _

 Implements EViewsEdx.IDatabase.DeleteObject

 Dim lsFilePat h As String = msDatabaseId & " \ " & _

 LCase(objectId) & " . " & _

 mDbPref.ObjectFileExt

 If System.IO.File.Exists(lsFilePath) Then

 System.IO.File.Delete(lsFilePath)

 End If

End Sub

CopyObject

CopyObject just does a simple file copy on the specified object:

Public Sub CopyObject(ByVal srcObjectId As String , _

 ByRef destObjectId As String , _

 Optional ByVal overwrite As Boolean = False) _

 Implements EViewsEdx.IDatabase.CopyObject

 Dim lsSrcFilePath As String = msDatabaseId & " \ " & _

 LCase(srcObjectId) & " . " & _

 mDbPref.ObjectFileExt

 Dim lsDestFilePath As String = msDatabaseId & " \ " & _

 LCase(destObjectId) & " . " & _

 mDbPref.ObjectFileExt

 If System.IO.File.Exists(lsDestFilePath) And Not overwrite Then

 Throw New COMException("" , EViewsEdx.ErrorCode.RECORD_NAME_IN_USE)

 End If

 Dim fi As New System.IO.FileInfo(lsSrcFilePath)

 fi.CopyTo(lsDestFilePath)

End Sub

The srcObjectId parameter is the object being copied. The destObjectId parameter is the name of

the new object to copy to. If overwrite is False and the new object name already exists, we need to

throw the RECORD_NAME_IN_USE error to notify EViews that the new object already exists. This will

prompt EViews to display an Overwrite dialog to the user.

Actually, a simplŜǊ ǿŀȅ ǘƻ ƛƳǇƭŜƳŜƴǘ ŀ ŎƻǇȅ ƻǇŜǊŀǘƛƻƴ ǿƻǳƭŘ ōŜ ǘƻ ǘŜƭƭ 9±ƛŜǿǎ ǘƘŀǘ ǿŜ ŘƛŘƴΩǘ ƛƳǇƭŜƳŜƴǘ

this function ourselves (by throwing the NotImplementedException exception like in

ReadObjectAttributes). EViews would then try to do the copy manually by calling ReadObject ,

followed by WriteObject . This would have worked fine for us as well.

RenameObject

RenameObject does a simple file rename on the specified object:

Public Sub RenameObject(ByVal srcObjectId As String , _

 ByVal destObjectId As String) _

 Implements EViewsEdx.IDatabase.RenameObject

 Dim lsSrcFilePath As String = msDatabaseId & " \ " & _

 LCase(srcObjectId) & " . " & _

 mDbPref.ObjectFileExt

 If Not System.IO.File.Exists(lsSrcFilePath) Then

 Throw New COMException("" , EViewsEdx.ErrorCode.RECORD_NAME_INVALID)

 End If

 Dim lsDestFilePath As String = msDatabaseId & " \ " & _

 LCase(destObjectId) & " . " & _

 mDbPref.ObjectFileExt

 If System.IO.File.Exists(lsDestFilePath) Then

 Throw New COMException("" , EViewsEdx.ErrorCode.RECORD_NAME_IN_USE)

 End If

 Dim fi As New System.IO.FileInfo(lsSrcFilePath)

 fi.MoveTo(lsDestFilePath)

End Sub

The srcObjectId parameter is the object being renamed. The destObjectId parameter is the new

name. If the new name conflicts with any pre-existing object, we need to throw the

RECORD_NAME_IN_USE error so EViews can show this error to the user.

Summary

We have now completed the XML Database Extension example. We will now proceed to our third

example that shows how you might support a server-based database.

SQL Server Database
Our third example will be based on a SQL Server database. We will create an EViews Database Extension

that will work for any SQL Server database. Because of the difficulties in knowing how to write data

ǇǊƻǇŜǊƭȅ ƛƴǘƻ ŀƴ ǳƴƪƴƻǿƴ {v[{ŜǊǾŜǊ ǘŀōƭŜΣ ǿŜΩƭƭ ƪŜŜǇ ǘƘƛǎ ŜȄŀmple Read Only.

Our server-based database extension will require the user to enter a server name, userid, and password.

We will also require them to select a SQL Server Catalog in order to restrict the number of objects that

will appear within a single database.

Once a catalog has been selected, our database window will display all table.columns that are found in

the selected catalog. Our database configuration options will allow users to define:

1. Whether to read each column as a series or a vector

2. Whether or not to include SQL Views along with Tables in the object listing

3. What hard coded frequency value to use when making a series

4. What hard coded start value to use when making a series

5. How many rows to return (all, or a fixed number)

The complete source code for this example is provided in the EdxSamples project available at
http://www.eviews.com/EViews8/Enterprise/EDXeg.html.

Create the SQL folder

Right-click the "EdxSamples" project, then select "Add", then "New Folder". Name the folder "SQL".

Create the Database Manager class

Right-click the "SQL" folder and select "Add", then "ClassΧ" from the menu. Name the class

"GenericSqlDbMgr.vb" and click Add.

Add the following header lines in the new class:

Imports System.Runtime.InteropServices

Imports System.Data.SqlClient

<Guid(" XXXXXXXX- XXXX- XXXX- XXXX- XXXXXXXXXXXX") , _

 ClassInterface(ClassInterfaceType.None), _

 ComVisible(True)> _

Public Class GenericSqlDbMgr

We also need to make this class implement the IDatabaseManager interface:

Public Class GenericSqlDbMgr

 Implements EViewsEdx.IDatabaseManager

We also need the following member constant:

Public Const TABLE_COLUMN_DELIM As String = " . "

http://www.eviews.com/EViews8/Enterprise/EDXeg.html

GetAttributes

Public Function GetAttributes(ByVal clientInfo As String) As Object _

 Implements EViewsEdx.IDatabaseManager.GetAttributes

 Return " name=GenericSqlEDX, " & _

 " description=Generic Sql Server EDX Database, " & _

 " type=gsqledx, server, dbids, dbidlabel=Catalog, " & _

 " login=server|user|pass|dbid, search=all|attr, " & _

 " nocreate, readonly "

End Function

Since this is a server-based database extension, we include the attribute "server ". We also include the
attribute "login=server|user|pass|dbid " to specify which fields the user will need to specify
when opening a connection to our database. Our database Ids will consist of SQL Server catalogs so we
use the "dbidlabel=Catalog " attribute to tell EViews how to label database Id fields within the
EViews user interface. We also include the "dbids " attribute to tell EViews that our code can provide a
list of all available database Ids (via GetDatabaseIds).

GetDatabaseIds

When the user clicks the "Browse" button on the Open Database dialog, we will need to provide a listing
of the valid catalogs in the currently selected SQL Server installation. We will need the server, username,
and password that have already been typed in by the user in the dialog so we can login to the server and
get the catalog list:

Public Function GetDatabaseIds(ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As Object _

 Implements EViewsEdx.IDatabaseManager.GetDatabaseIds

 'build the connection string

 Dim lsCS As String = " Data Source= " & server & " ; "

 If username > "" Then

 lsCS &= lsCS & " User Id= " & username & " ; "

 End If

 If password > "" Then

 lsCS &= lsCS & " Password= " & password & " ; "

 End If

 'get the list of catalogs

 Dim lsReturn As String = ""

 Dim conn As SqlConnection = Nothing

 Try

 conn = New SqlConnection(lsCS)

 conn.Open()

 Dim d As New SqlCommand(" exec sp_databases " , conn)

 Dim r As SqlDataReader = d.ExecuteReader()

 Dim lsName As String

 While r.Read

 lsName = Util.myCStr(r(0))

 If lsName > "" Then

 If lsReturn > "" Then

 lsReturn &= vbCrLf

 End If

 'on each line, EViews is expecting:

 'code[tab]parentCode[tab]shortDesc[tab]longDesc

 lsReturn &= lsName

 End If

 End While

 r.Close()

 conn.Close()

 Catch ex As Exception

 If InStr(ex.Message, " Login failed for user " , _

 CompareMethod.Text) > 0 Then

 Throw New COMException("" ,

EViewsEdx.ErrorCode.SECURITY_LOGIN_INVALID)

 Else

 Throw New COMException(ex.Message)

 End If

 Finally

 If conn IsNot Nothing Then

 conn.Close()

 End If

 End Try

 Return lsReturn

End Function

For our example we return a multiline string to EViews containing one databaseId on each line. See the

API documentation of GetDatabaseIds for a discussion of how to return a more descriptive list of

databaseIds, including how to arrange the ids into a hierarchical tree.

myCStr

Add the myCStr function to the Util class:

Public Shared Function myCStr(ByRef roValue As Object) As String

 Try

 If roValue Is DBNull.Value Then

 Return ""

 End If

 Return CStr (roValue)

 Catch ex As Exception

 Return ""

 End Try

End Function

Register the Database Manager class

Type the following into the EViews command window:

edxadd EdxSamples.GenericSqlDbMgr

Test the Database Manager class

Now, when the user types:

dbopen(type=gsqledx)

EViews provides this dialog to be filled out:

hƴŎŜ ǘƘŜȅΩǾŜ ǘȅǇŜŘ ƛƴ ǘƘŜ ǎŜǊǾŜǊΣ ǳǎŜǊƴŀƳŜΣ ǇŀǎǎǿƻǊŘΣ ŀƴŘ ǎŜƭŜŎǘŜŘ ŀ ŎŀǘŀƭƻƎ ƴŀƳŜΣ ŎƭƛŎƪƛƴƎ the Browse
button will bring up the Browse dialog.

Note that if the login fails, we need to throw the SECURITY_LOGIN_INVALID error code so that
EViews can display another login dialog to allow the user to correct the login information.

When OK is clicked in the Browse dialog, EViews will call OpenDb to create the database connection.

OpenDb

Public Function OpenDb(ByVal databaseId As String , _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode, _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As EViewsEdx.IDatabase _

 Implements EViewsEdx.IDatabaseManager.OpenDb

 'build the connection string

 Dim lsCS As Str ing = " Data Source= " & server & " ; "

 Dim lsCatalog As String = ""

 Dim lsTable As String = ""

 Dim liPos As Integer = InStr(databaseId, TABLE_COLUMN_DELIM)

 lsCatalog = databaseId

 If lsCatalog > "" Then

 lsCS &= lsCS & " Initial Catalog= " & lsCatalog & " ; "

 End If

 If username > "" Then

 lsCS &= lsCS & " User Id= " & username & " ; "

 End If

 If password > "" Then

 lsCS &= lsCS & " Password= " & password & " ; "

 End If

 'make sure we can connect...

 Dim conn As SqlConnection = Nothing

 Try

 conn = New SqlConnection(lsCS)

 conn.Open()

 Catch ex As Exception

 If InStr(ex.Message, " Login failed for user " , _

 CompareMethod.Text) > 0 Then

 Throw New COMException("" ,

EViewsEdx.ErrorCode.SECURITY_LOGIN_INVALID)

 Else

 Throw New COMException(ex.Message)

 End If

 End Try

 'connection made...

 Return New GenericSqlDb(lsCS, conn, lsTable, mGenSqlPrefs)

End Function

Once we build the connection string and verify we can open the SqlConnection object, we pass it to a
new instance of the GenericSqlDb class.

Supporting User Configurable Options

Before we can code the GenericSqlDb ŎƭŀǎǎΣ ǿŜΩƭƭ ƴŜŜŘ ǘƻ ŎƻŘŜ ǘƘŜ ǳǎŜǊ ŎƻƴŦƛƎǳǊŀōƭŜ ƻǇǘƛƻƴǎΦ This
database extension has quite a few options that need to be set by the user in order to operate correctly.
CƛǊǎǘ ǿŜΩƭƭ ŎǊŜŀǘŜ ŀ Ŏƭŀǎǎ ǘƻ ƪŜŜǇ ǘƘŜǎŜ ƻǇǘƛƻƴ ǾŀƭǳŜǎ ƛƴ ƳŜƳƻǊȅΦ Create a class and name it
GenericSqlPrefs.vb:

Public Class GenericSqlPrefs

 Private mbDisplay As Boolean

 Private msDefaultFreq As String

 Private msDefaultStart As String

 Private mbUseRowCount As Boolean

 Private miFixedRowCount As Integer

 Private msIDColumnName As String

 Private mbExactMatch As Boolean

 Private mbIncludeViews As Boolean

 Private mbTreatAsSeries As Boolean

 Public Sub New()

 mbDisplay = False

 msDefaultFreq = " U"

 msDefaultStart = " U1"

 mbUseRowCount = True

 miFixedRowCount = 0

 msIDColumnName = ""

 mbExactMatch = False

 IncludeViews = False

 mbTreatAsSeries = True

 End Sub

 Public Property DisplayOnEachRead() As Boolean

 Get

 Return mbDisplay

 End Get

 Set (ByVal value As Boolean)

 mbDisplay = value

 End Set

 End Property

 Public Property DefaultFrequency() As String

 Get

 Return msDefaultFreq

 End Get

 Set (ByVal value As String)

 msDefaultFreq = value

 End Set

 End Property

 Public Property DefaultStart() As String

 Get

 Return msDefaultStart

 End Get

 Set (ByVal value As String)

 msDefaultStart = value

 End Set

 End Property

 Public Property UseRowCount() As Boolean

 Get

 Return mbUseRowCount

 End Get

 Set (ByVal value As Boolean)

 mbUseRowCount = value

 End Set

 End Property

 Public Property FixedRowCount() As Integer

 Get

 Return miFixedRowCount

 End Get

 Set (ByVal value As Integer)

 miFixedRowCount = value

 End Set

 End Property

 Public Property IDColumnName() As String

 Get

 Return msIDColumnName

 End Get

 Set (ByVal value As String)

 msIDColumnName = value

 End Set

 End Property

 Public Property ExactMatch() As Boolean

 Get

 Return mbExactMatch

 End Get

 Set (ByVal value As Boolean)

 mbExactMatch = value

 End Set

 End Property

 Public Property IncludeViews() As Boolean

 Get

 Return mbIncludeViews

 End Get

 Set (ByVal value As Boolean)

 mbIncludeViews = value

 End Set

 End Property

 Public Property TreatAsSeries() As Boolean

 Get

 Return mbTreatAsSeries

 End Get

 Set (ByVal value As Boolean)

 mbTreatAsSeries = value

 End Set

 End Property

End Class

Now, create a new Dialog Form in the "SQL" folder and name it GenericSqlPreferences. Add a few
controls to make the dialog look similar to:

If you wish to match the control names with those we used in the code below, our naming convention is
as follows: The first groupbox contains three edit fields named txtFreq, txtStart, and txtFixedRowCount,
and two radio buttons with the names rbUseRowCount and rbAlwaysReturn. The second groupbox
contains the rbSeries and rbVector radio buttons. We have also added a checkbox named
cbxIncludeViews.

The code behind for this form will look like this:
Public Class GenericSqlPreferences

 Private mGenSqlPrefs As GenericSqlPrefs

 Public Sub New(ByRef rPrefs As GenericSqlPrefs)

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

 ' Add any initialization after the InitializeComponent() call.

 mGenSqlPrefs = rPrefs

 With mGenSqlPrefs

 txtFreq.Text = mGenSqlPrefs.DefaultFrequency

 txtStart.Text = mGenSqlPrefs.DefaultStart

 If mGenSqlPrefs.UseRowCount Then

 rbUseRowCount.Checked = True

 Else

 rbAlways Return.Checked = True

 End If

 txtFixedRowCount.Text = mGenSqlPrefs.FixedRowCount.ToString

 cbxIncludeViews.Checked = mGenSqlPrefs.IncludeViews

 If mGenSqlPrefs.TreatAsSeries Then

 rbSeries.Checked = True

 Else

 rbVector.Checked = True

 End If

 End With

 End Sub

 Private Sub OK_Button_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles OK_Button.Click

 'confirm the entered values...

 If Trim(txtFreq.Text) = "" Then

 MsgBox(" Default frequency is required. " , MsgBoxStyle.Critical)

 Return

 End If

 If Trim(txtStart.Text) = "" Then

 MsgBox(" Default start is required. " , MsgBoxStyle.Critical)

 Return

 End If

 If rbAlwaysReturn.Checked Then

 If Util.myCInt(txtFixedRowCount.Text) <= 0 Then

 MsgBox(" You must specify a positive row count to always

return. " , MsgBoxStyle.Crit ical)

 Return

 End If

 End If

 'save all the values...

 With mGenSqlPrefs

 .DefaultFrequency = txtFreq.Text

 .DefaultStart = txtStart.Text

 .UseRowCount = rbUseRowCount.Checked

 .FixedRowCount = Util.myCInt(txtFixedRowCount.Text)

 .IncludeViews = cbxIncludeViews.Checked

 .TreatAsSeries = rbSeries.Checked

 End With

 Me.DialogResult = System.Windows.Forms.DialogResult.OK

 Me.Close()

 End Sub

 Private Sub Cancel_Button_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Cancel_Button.Click

 Me.DialogResult = System.Windows.Forms.DialogResult.Cancel

 Me.Close()

 End Sub

End Class

Add a new member variable in GenericSqlDbMgr that will keep these options in memory:

Public Class GenericSqlDbMgr

 Implements EViewsEdx.IDatabaseManager

 Private mGenSqlPrefs As New GenericSqlPrefs

 Public Const TABLE_COLUMN_DELIM As String = " . "

Now put the following code in ConfigurePreferences :

Public Function ConfigurePreferences(ByVal server As String , _

 ByVal usernam e As String , _

 ByVal password As String , _

 ByRef prefs As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.ConfigurePreferences

 Dim frm As New GenericSqlPreferences(mGenSqlPrefs)

 Dim res As System.Windows.Forms.DialogResult = frm.ShowDialog()

 If res = Windows.Forms.DialogResult.Cancel Then

 Return False

 End If

 'save the preferences as a single string...

 With mGenSqlPrefs

 prefs = " DisplayOnEach= " & .DisplayOnEachRead.ToString & " | " & _

 " DefaultFreq= " & .DefaultFrequency & " | " & _

 " DefaultStart= " & .DefaultStart & " | " & _

 " UseRowCount= " & .UseRowCount.ToString & " | " & _

 " FixedRowCount= " & .FixedRowCount.ToString & " | " & _

 " IDColumnName=" & .IDColumnName & " | " & _

 " ExactMatch= " & .ExactMatch.ToString & " | " & _

 " IncludeViews= " & .IncludeViews.ToString & " | " & _

 " TreatAsSeries= " & .TreatAsSeries.ToString

 End With

 Return True

End Function

and SetPreferences :

Public Sub SetPreferences(ByVal prefs As String) _

 Implements EViewsEdx.IDatabaseManager.Se tPreferences

 If Trim(Util.myCStr(prefs)) = "" Then

 Return

 End If

 Dim la() As String = Split(prefs, " | ")

 Dim liPos As Integer

 Dim lsName As String

 Dim lsValue As String

 For Each item As String In la

 If item > "" Then

 liPos = InStr(item, " =")

 If liPos > 0 Then

 lsName = Mid(item, 1, liPos - 1)

 lsValue = Mid(item, liPos + 1)

 With mGenSqlPrefs

 Select Case LCase(lsName)

 Case " displayoneach "

 .DisplayOnEachRead = Util.myCBool(lsValue, False)

 Case " defaultfreq "

 .DefaultFrequency = Trim(lsValue)

 Case " defaultstart "

 .DefaultStart = Trim(lsValue)

 Case " userowcount "

 .UseRowCount = Util.myCBool(lsValue, True)

 Case " fixedrowcount "

 .FixedRowCount = Util.myCInt(lsValue)

 Case " idcolumnname "

 .IDColumnName = lsValue

 Case " exactmatch "

 .ExactMatch = Util.myCBool(lsValue, False)

 Case " includeviews "

 .IncludeViews = Util.myCBool(lsValue, True)

 Case " treatasseries "

 .TreatAsSeries = Util.myCBool(lsValue, True)

 End Select

 End With

 End If

 End If

 Next

End Sub

Create the Database class

Right click the "SQL" folder in the Solution Explorer and select "Add", then "ClassΧ" from the menu. In

the Add New Item dialog, select the "Class" template and rename the file to "GenericSqlDb.vb" and click

Add.

Add the following to the header:

Imports System.Runtime.InteropServices

Imports System.Data.SqlClient

Public Class GenericSqlDb

And also make sure this class implements the IDatabaseManager interface:

Public Class GenericSqlDb

 Implements EViewsEdx.IDatabase

Also, include the following member variables:

Public Class GenericSqlDb

 Implements EViewsEdx.IDatabase

 Private msCS As String

 Private msCatalog As String

 Private mconn As SqlConnection

 Private mcmd As SqlCommand

 Private mreader As SqlDataReader

 Private mbSearchAbort As Boolean

 Private mobjSync As New Object

 Private mGenSqlPrefs As GenericSqlPrefs

 Private msSchema As String

The constructor for this class looks like this:

Public Sub New(ByVal vsCS As String , _

 ByRef rconn As SqlConnection, _

 ByVal vsCatalog As String , _

 ByRef rPrefs As GenericSqlPrefs)

 MyBase.New()

 msCS = vsCS

 msCatalog = vsCatalog

 mconn = rconn

 mGenSqlPrefs = rPrefs

 msSchema = ""

End Sub

We will also need three helper functions:

Private Function BuildTableName(ByVal vsTableName As String) As String

 If msSchema > "" Then

 vsTableName = msSchema & " . " & vsTableName

 End If

 Return vsTableName

End Function

Private Sub ExtractTableCol(ByVal vsObjectId As String , _

 ByRef rsTableName As String , _

 ByRef rsColu mnName As String)

 Dim liPos As Integer = InStr(vsObjectId,

GenericSqlDbMgr.TABLE_COLUMN_DELIM)

 If liPos > 0 Then

 rsTableName = Mid(vsObjectId, 1, liPos - 1)

 rsColumnName = Mid(vsObjectId, liPos +

Len(GenericSqlDbMgr.TABLE_COLUMN_DELIM))

 Else

 rsTableName = ""

 rsColumnName = ""

 End If

End Sub

Private Sub CloseReader()

 If mreader IsNot Nothing Then

 Try

 mreader.Close()

 Catch ex As Exception

 'ignore

 End Try

 End If

End Sub

SearchByAttributes

Public Sub SearchByAttributes(ByVal searchExpression As String , _

 ByVal attrNames As String) _

 Implements EViewsEdx.IDatabase.SearchByAttributes

 Dim lsSQL As String

 'clean up

 CloseReader()

 If mGenSqlPrefs.IncludeViews Then

 lsSQL = " select a.* from INFORMATION_SCHEMA.COLUMNS a " & _

 " inner join INFORMATION_SCHEMA.TABLES b " & _

 " on b.TABLE_CATALOG = a.TABLE_CATALOG " & _

 " and b.TABLE_SCHEMA = a.TABLE_SCHEMA " & _

 " and b.TABLE_NAME = a.TABLE_NAME " & _

 " and b.TABLE_TYPE in ('BASE TABLE', 'VIEW') " & _

 " order by a.TABLE_NAME, a.COLUMN_NAME "

 Else

 lsSQL = " select a.* from INFORMATION_SCHEMA.COLUMNS a " & _

 " inner join INFORMATION_SCHEMA.TABLES b " & _

 " on b.TABLE_CATALOG = a.TABLE_CATALOG " & _

 " and b.TABLE_SCHEMA = a.TABLE_SCHEMA " & _

 " and b.TABLE_NAME = a.TABLE_NAME " & _

 " and b.TABLE_TYPE in ('BASE TABLE') " & _

 " order by a.TABLE_NAME, a.COLUMN_NAME"

 End If

 'open a new reader object

 mbSearchAbort = False

 mcmd = New SqlCommand(lsSQL, mconn)

 mreader = mcmd.ExecuteReader()

End Sub

Depending on whether to include SQL Views or not, we generate a SQL script and query the SQL Server
database for a list of all table and column names. We keep a reference to the SQLReader object so that
we can query this list one by one during the SearchNe xt call.

SearchNext

Public Function SearchNext(ByRef objectId As String , _

 ByRef attr As Object) As Boolean _

 Implements EViewsEdx.IDatabase.SearchNext

 If mreader Is Nothing Then

 Return False

 End If

 'if we're at the end of the reader object, return false

 If Not mreader.Read Then

 mreader.Close()

 Return False

 End If

 'see if our search has been aborted...

 SyncLock mobjSync

 If mbSearchAbort Then

 mbSearc hAbort = False

 CloseReader()

 Return False

 End If

 End SyncLock

 msSchema = Util.myCStr(mreader(" TABLE_SCHEMA"))

 objectId = Util.myCStr(mreader(" TABLE_NAME")) & _

 GenericSqlDbMgr.TABLE_COLUMN_DELIM & _

 Util.myCStr(mreader(" COLUMN_NAME"))

 ReadObjectAttributes(objectId, "" , attr)

 Return True

End Function

SearchNext will ask for the next row in the mReader recordset and place both the table name and
column name as a single string as the objectId .

One thing to note here is that we do have support built-in for cancelling the search loop that EViews is
doing. mbSearchAbort is a variable that can be set to True in the SearchAbort method:

SearchAbort

Public Sub SearchAbort() Implements EViewsEdx.IDatabase.SearchAbort

 SyncLock mobjSync

 mbSearchAbort = True

 End SyncLock

End Sub

Because this method can be called asynchronously by EViews, we need to make sure we synchronize the
access to the member variable mbSearchAbort by using SyncLock . This is also used in SearchNext
to make sure we have it locked when we check for the mbSearchAbort value.

Back in SearchNext , since the attributes for the object are identical to those being retrieved by
ReadObjectAttributes , we just call that method to retrieve them.

ReadObjectAttributes

Public Sub ReadObjectAttributes(ByVal objectId As String , _

 ByVal defaultFreq As String , _

 ByRef attr As Object) _

 Implements EViewsEdx.IDatabase.ReadObjectAttributes

 Dim lsTableName As String = ""

 Dim lsColumnName As String = ""

 ExtractTableCol(objectId, lsTableName, lsColumnName)

 Dim lco nn As New SqlConnection(msCS)

 lconn.Open()

 Try

 Dim lsSQL As String = " select DATA_TYPE " & _

 " from INFORMATION_SCHEMA.COLUMNS " & _

 " where TABLE_NAME = " &

Util.AsQuotedString(lsTableName) & _

 " and COLUMN_NAME = " &

Util.AsQuotedString(lsColumnName)

 Dim cmd As New SqlCommand(lsSQL, lconn)

 Dim lsTypeName As String = Util.myCStr(cmd.ExecuteScalar())

 If lsT ypeName = "" Then

 Throw New COMException("" ,

EViewsEdx.ErrorCode.RECORD_NAME_INVALID)

 End If

 Dim lsType As String = IIf(mGenSqlPrefs.TreatAsSeries, " series " ,

" vector ")

 If InStr(lsTypeName, " varchar " , CompareMethod.Text) > 0 Then

 lsType = IIf(mGenSqlPrefs.TreatAsSeries, " alpha " , " svector ")

 End If

 attr = " name=" & objectId & " , type= " & lsType

 If mGenSqlPrefs.UseRowCount Then

 lsSQL = " select count(*) as RecCnt from " &

BuildTableName(lsTableName)

 cmd.CommandText = lsSQL

 Dim liRowCnt As Integer = Util.myCInt(cmd.ExecuteScalar())

 attr &= " , obs= " & liRowCnt.ToString

 ElseIf mGenSqlPrefs.FixedRowCount > 0 Then

 attr &= " , obs= " & mGenSqlPrefs.FixedRowCount.ToString

 End If

 If mGenSqlPrefs.TreatAsSeries Then

 If mGenSqlPrefs.DefaultFrequency > "" Then

 attr &= " , freq= " & mGenSqlPrefs.DefaultFrequency

 End If

 If mGenSqlPrefs.DefaultStart > "" Then

 attr &= " , start= " & mGenSqlPrefs.DefaultStart

 End If

 End If

 Finally

 lconn.Close()

 End Try

End Sub

ReadObjectAttributes determines the appropriate attributes for the selected table/column. LŦ ǿŜΩǊŜ
treating the column as a series type, we also provide the default frequency and start value as specified
in the user configurable options.

ReadObject

Public Sub ReadObject(ByVal objectId As String , _

 ByVal defaultFreq As String , _

 ByRef attr As Object , _

 ByRef vals As Object , _

 ByRef ids As Object) _

 Implements EViewsEdx.IDatabase.Rea dObject

 Dim lsTableName As String = ""

 Dim lsColumnName As String = ""

 ExtractTableCol(objectId, lsTableName, lsColumnName)

 Dim lconn As New SqlConnection(msCS)

 lconn.Open()

 Try

 Dim lsSQL As String = " select DATA_TYPE " & _

 " from INFORMATION_SCHEMA.COLUMNS " & _

 " where TABLE_NAME = " &

Util.AsQuotedString(lsTableName) & _

 " and COLUMN_NAME = " &

Util.AsQuotedString(lsColumnName)

 Dim cmd As New SqlCommand(lsSQL, lconn)

 Dim lsTypeName As String = Util.myCStr(cmd.ExecuteScalar())

 If lsTypeName = "" Then

 Throw New COMException("" ,

EViewsEdx.ErrorCode.RECORD_NAME_INVALID)

 End If

 Dim lsType As String = IIf(mGenSqlPrefs.TreatAsSeries, " series " ,

" vector ")

 If InStr(lsTypeName, " varchar " , CompareMethod.Text) > 0 Then

 lsType = IIf(mGenSqlPrefs.TreatAsSeries, " alpha " , " svector ")

 End If

 lsSQL = " select count(*) as RecCnt from " &

BuildTableName(lsTableName)

 cmd.CommandText = lsSQL

 Dim liRowCnt As Integer = Util.myCInt(cmd.ExecuteScalar())

 attr = " type= " & lsType

 If mGenSqlPrefs.UseRowCount Then

 attr &= " , obs= " & liRowCnt.ToString

 ElseIf mGenSqlPrefs.FixedRowCount > 0 Then

 attr &= " , obs= " & mGenSqlPrefs.FixedRowCount.ToString

 End If

 If mGenSqlPrefs.TreatAsSeries Then

 If mGenSqlPrefs.DefaultFrequency > "" Then

 attr &= " , freq= " & mGenSqlPrefs.DefaultFrequency

 End If

 If mGenSqlPrefs.DefaultStart > "" Then

 attr &= " , start= " & mGenSqlPrefs.DefaultStart

 End If

 End If

 Dim liArraySize As Integer = liRowCnt

 If Not mGenSqlPrefs.UseRowCount And mGenSqlPrefs.FixedRowCount > 0

Then

 liArraySize = mGenSqlPrefs.FixedRowCount

 End If

 ReDim vals(0 To liArraySize - 1)

 lsSQL = " select top " & liArraySize.ToString & " " & _

 lsColumnName & " from " & BuildTableName(lsTableName)

 cmd.CommandText = lsSQL

 Dim liIndex As Integer = - 1

 Dim lreader As SqlDataReader = Nothing

 Try

 If liRowCnt > 0 Then

 lreader = cmd.ExecuteReader()

 While lreader.Read

 liIndex += 1

 vals(liIndex) = Util.myCStr(lreader(0))

 End While

 End If

 While liIndex < (liArraySize - 1)

 liIndex += 1

 vals(liIndex) = Nothing

 End While

 Finally

 If lreader IsNot Nothing Then

 lreader.Close()

 End If

 End Try

 Finally

 lconn.Close()

 End Try

End Sub

ReadObject looks a lot like ReadObjectAttributes but includes the addition of reading the column
data for the specified table and inserting them into the vals parameter.

ProposeName

Because we display our object names as "table.column", and because the "." is not allowed in EViews
object names within EViews, we can implement the ProposeN ame method to suggest a better name:

Public Function ProposeName(ByRef objectId As String , _

 ByVal destFormat As EViewsEdx.DbFormat, _

 ByVal destInfo As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.ProposeName

 Select Case destFormat

 Case EViewsEdx.DbFormat.EViewsDatabase

 Case EViewsEdx.DbFormat.EViewsWorkfile

 Dim liPos As Integer = InStr(objectId, _

GenericSqlDbMgr.TABLE_COLUMN_DELIM)

 If liPos > 0 Then

 objectId = Mid(objectId, liPos + 1)

 End If

 End Select

 'always display to the user the new name

 'in case it conflicts with somthing already

 'in the EViews database or workfile

 Return True

End Function

When the destination is an EViews database or workfile, this function will just strip off the table name
and the period in objectId . We return True to tell EViews to display this new name to the user in
interactive mode. This gives the user a chance to approve or modify the proposed name.

Close

Because our mReader object can be left open, we need to make sure that when our Database object is
closed, we also close mReader to release any SQL Server resources that are still being held. We can do
this in the Close method.

Public Sub Close() Implements EViewsEdx.IDatabase.Close

 Try

 CloseReader()

 mconn.Close()

 Catch ex As Exception

 'ignore

 End Try

End Sub

Add the functions myCBool and AsQuotedString to the Util class:

Public Shared Function myCBool(ByRef roValue As Object , _

 Optional ByVal vbDefaultValue As Boolean = False) _

 As Boolean

 Try

 If roValue Is DBNull.Value Then

 Return vbDefaultValue

 End If

 Return CBool (roValue)

 Catch ex As Exception

 Return vbDefaultValue

 End Try

End Function

Public Shared Function AsQuotedString(ByRef roObject As Object) As String

 Dim lsValue As String = myCStr(roObject)

 lsValue = " ' " & Replace(lsValue, " ' " , " '' ") & " ' "

 Return lsValue

End Function

Summary

At this point, you should be able to use this database extension to open a connection to any SQL Server
database and read in the data from any table/column.

One way to improve this database extension is to add support for user-specified ID columns during the
ReadObject method. This would give EViews a chance to automatically determine the frequency of the
observations from the set of date identifiers rather than requiring it to be set by the user in the
database manager preferences.

Distributing a Database Extension
Distributing a Database Extension to other users of EViews requires several steps:

1) The software that implements your extension must be installed ƻƴ ǘƘŜ ǳǎŜǊΩǎ ǎȅǎǘŜƳ

2) Your class that implements the IDatabaseManager interface must be registered with Windows

so that EViews will be able to create it using its ProgId.

3) EViews must be made aware of the ProgId of your database manager class.

Installing your Database Extension
¸ƻǳǊ ŘŀǘŀōŀǎŜ ŜȄǘŜƴǎƛƻƴ Ŏŀƴ ōŜ ƛƴǎǘŀƭƭŜŘ ŀƴȅǿƘŜǊŜ ƻƴ ǘƘŜ ǳǎŜǊΩǎ ŦƛƭŜ ǎȅǎǘŜƳΣ ƛƴŎƭǳŘƛƴƎ ǳƴŘŜǊ ǘƘŜ ƴƻǊƳŀƭ

tǊƻƎǊŀƳ CƛƭŜǎ ǎǳōŘƛǊŜŎǘƻǊȅ όŀǎ ƭƻƴƎ ŀǎ ƛǘΩǎ ǇǊƻǇŜǊƭȅ ǊŜƎƛǎǘŜǊŜŘύΦ LŦ ȅƻǳǊ ŜȄǘŜƴǎƛƻƴ ǊŜǉǳƛǊŜǎ ŀ ǾŜǊǎƛƻƴ ƻŦ

.NET Framework to be pre-installed, make sure your installer either checks for this or knows how to

install this pre-requisite during the installation. EViews itself does not require .NET Framework so it is

not guaranteed to be installed.

Registering your Database Manager
After your extension has been installed onto the target system, you will have to register it with Windows

before it can be found and used by programs such as EViews. Many installer utilities (such as

Installshield) can help you do this automatically at the end ƻŦ ǘƘŜ ƛƴǎǘŀƭƭŀǘƛƻƴΣ ōǳǘ ǿŜΩƭƭ ŘŜǎŎǊƛōŜ ǘƘŜ

steps for doing this manually in case your utility does not support this.

Registering your component will depend on whether or not it was developed using the .NET Framework.

If your database extension was built using the .NET Framework, you will have to use the .NET REGASM

tool to properly register your extension on the target system. Currently, there are two main versions of

REGASM, depending on which version of .NET Framework you are dependent on. Frameworks 3.5 and

earlier use REGASM under the "C:\Windows\Microsoft.NET\Framework\v2.0.50727" subdirectory.

Frameworks 4.0 and later use REGASM under "C:\Windows\Microsoft.NET\Framework\v4.0.30319"

subdirectory.

For example, if your extension was written with .NET Framework 4.0, you will have to launch the 4.0

REGASM tool with the following command:

C: \ Windows \ Microsoft.NET \ Framework \ v4.0.30319 \ regasm .exe /silent /codebase

" c: \ path \ to \ your \ extension \ dll "

It is important to remember that if the target system is a 64-bit OS, you must register your extension

under 64-bit so that 64-bit EViews users can use it as well. .NET provides a 64-bit version of REGASM

under the "Framework64" subdirectory. For example:

C: \ Windows \ Microsoft.NET \ Framework64 \ v4.0.30319 \ regasm.exe /silent /codebase

" c: \ path \ to \ your \ extension \ dll "

Note that registering the same .NET DLL for both 32-bit and 64-bit use will only work if you compiled the

project using the "Any CPU" setting within Visual Studio. Otherwise, cross-bit registration will not work

and may require you to separately build and distribute two different DLLs, one for each architecture. Be

sure to test your installation on both 32-bit and 64-bit systems to make sure your classes are being

registered properly.

All other COM objects (NOT developed with the .NET Framework) should be registered using the

standard REGSVR32 tool:

C: \ Windows \ System32 \ regsvr32.exe /s " c: \ path \ to \ your \ dll "

On a 64-bit machine, the above command registers the 64-bit version of your DLL. If you also have a

separate 32-ōƛǘ ǾŜǊǎƛƻƴ ƻŦ ȅƻǳǊ ŜȄǘŜƴǎƛƻƴΣ ȅƻǳΩƭƭ ǿŀƴǘ ǘƻ ǊŜƎƛǎǘŜǊ ǘƘŀǘ ǎŜǇŀǊŀǘŜƭȅ ōȅ using the 32-bit

version of regsvr32 under the "SysWOW64" subdirectory:

C: \ Windows \ SysWOW64\ regsvr32 .exe /s " c: \ path \ to \ your \ 32 bit \ dll "

Making EViews aware of your Database Manager
The final step is to make EViews itself aware that your new database extension is available on the target

system.

The simplest way to do this is to include an additional empty text file in the installation of your database

extension. The file should be written into the subdirectory "%PROGRAMDATA%\IHS EViews\EDX" and

have a file name consisting of the ProgID of your database manager class. The next time EViews runs on

the target machine, it will scan the directory, detect the new text file, parse it, then ask the user if they

would like to register the new extension within EViews.

The file name may also include a human-readable description enclosed in parenthesis. For example, if a

file was written with the name:

C: \ ProgramData \ IHS EViews \ EDX\ Company.DatabaseManager (Our Database Name).txt

Then the next time the user launches EViews they will see the following dialog:

Clicking "Yes" will register the extension with EViews. The extension should immediately appear in the

list of database types available in the Open Database dialog.

Note that this approach will work even if the user installs EViews AFTER installing your component (in

this case, you should create the "%PROGRAMDATA%\IHS EViews\EDX" folder if it does not already exist

during your installation). It will also work if a new user logs onto the target system.

If you would like to pre-register your extension with EViews so that users do not have to confirm the

registration upon startup, you can do this by launching EViews with the "/edxaddsilent" command

followed by the ProgID of your database manager:

(32 - bit) C: \ Program Files (x86) \ EViews 8 \ EViews8.com /edxaddsilent

Company.DatabaseManager

(64 - bit) C: \ Program Files \ EViews 8 \ EViews8_x64.com /edxaddsilent Company.DatabaseManager

This approach requires that EViews is already installed on the system. Note that this will pre-register

your extension for the current user only. If there are other users on the system, you will have to run the

ŜŘȄŀŘŘǎƛƭŜƴǘ ŎƻƳƳŀƴŘ ǳƴŘŜǊ ŜŀŎƘ ǳǎŜǊΩǎ ŀŎŎƻǳƴǘΦ

EViews also supports several commands inside EViews that allow a user to manage their list of available

database extensions. The following commands are available:

edxadd progid

Enables the database extension with the specified progid.

edx drop progid

Disables the database extension with the specified progid.

edxscan

Forces EViews to rescan the directory of text files representing available extensions, asking the user

whether they would like to install any extensions that are not already enabled. This command allows a

user to re-enable an extension that has previously been rejected or dropped.

bƻǘŜ ǘƘŀǘ ŘŀǘŀōŀǎŜ ŜȄǘŜƴǎƛƻƴ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ƛǎ ǎǇŜŎƛŦƛŎ ǘƻ ŜŀŎƘ ǳǎŜǊ ŀƴŘ ƛǎ ǎǘƻǊŜŘ ƛƴ ǘƘŜ ǳǎŜǊΩs

EViews32.ini file. You may move the current configuration information to a new machine by simply

copying the ini file between the two machines.

API Reference

IDatabaseManager
The Database Manager is the initial contact point with EViews. It provides EViews with meta-data about

the database format that it manages (e.g. whether databases in this format are always read-only vs.

read/write). It is responsible for creating database objects whenever EViews needs to use a particular

database. It also includes functionality for managing entire databases at once such as functions to

rename, copy, or delete an entire database.

Methods
AdjustSearchNamePattern Gives database manager a chance to adjust the name pattern as part

of a search by object attributes.
Close Called by EViews during shutdown.
ConfigurePreferences Provides a GUI for viewing/edit ing user specific preferences.
CopyDb Copies a database.
DeleteDb Deletes a database.
GetAttributes Retrieves attributes of this database manager.
GetDatabaseIds Retrieves a list of database identifiers available for this database

format.
OpenDb Returns an IDatabase interface for a specific database.
ProposeName Gives database manager a chance to propose a new object name if

the current name is illegal in the specified destination.
RenameDb Renames a database.
SetPreferences Allows the database manager to realign itself with user preferences

set during ConfigurePreferences .

IDatabaseManager.AdjustSearchNamePattern Method

Called by EViews to allow the database manager to adjust a name pattern as part of a search by object

attributes.

Syntax

Visual Basic (usage)

Public Sub AdjustSearchNamePattern(ByRef objectIdPattern As String) _

 Implements EViewsEdx.IDatabaseManager.AdjustSearchNamePattern

This function will be called whenever a user performs a search which involves a name pattern. The

function gives the database manager a chance to modify the name pattern that was specified by the

user before the search begins. For example, the database manager can use this function to make a

search for "GDP" be equivalent to a search for "GDP.*". This might make sense in a case where all object

identifiers in the database always contain dots so that a simple search for "GDP" will never find any

objects.

Note that most database extensions will not require this functionality in which case this function can be

left empty.

IDatabaseManager.Close Method

Called by EViews when it no longer needs this database manager (usually during EViews shutdown).

Gives the Database Manager a chance to release any allocated resources.

Syntax

Visual Basic (usage)

Public Sub Close() Implements EViewsEdx.IDatabaseManager.Close

Note: If the Database Manager is being developed in a .NET environment and problems are occurring

during EViews shutdown, you might try adding a call to GC.Collect during Close to encourage .NET

to release any COM object references that are being held by dead objects on the managed heap.

IDatabaseManager.ConfigurePreferences Method

Called by EViews when the user selects the View->Preferences menu option on the database window.

This function allows the database manager to provide a user interface (a dialog, for example) to

configure user specific preferences for the current database.

Syntax

Visual Basic (usage)

Public Function ConfigurePreferences(ByVal server As String , _

 ByVal username As String , _

 ByVal password As String , _

 ByRef prefs As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.ConfigurePreferences

The database manager may save these preferences in its own storage (for example, by sending them to

the server in a client-server system), or it can return them as a string to EViews by filling out the pref s

argument. If prefs is set and ConfigurePreferences returns True , EViews will save this string into

the EViews INI file for the current user. From then on, every time this Database Manager is loaded, the

prefs string will be passed back into the manager by a call to the SetPreferences function. The

prefs string can follow any format, although it should generally be kept reasonably short since it will be

ǎǘƻǊŜŘ ƻƴ ŀ ǎƛƴƎƭŜ ƭƛƴŜ ƛƴǎƛŘŜ ǘƘŜ ǳǎŜǊΩǎ LbL ŦƛƭŜΦ ό[ƻƴƎŜǊ ƛƴŦƻǊƳŀǘƛƻƴ ǎƘƻǳƭŘ ōŜ ǎǘƻǊŜŘ manually

elsewhere on the system.)

IDatabaseManager.CopyDb Method

Called by EViews when the user copies an entire database (using Proc->Copy the Database or the

dbcopy command).

Syntax

Visual Basic (usage)

Public Function CopyDb(ByVal srcDatabaseId As String , _

 ByVal destDatabaseId As String , _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String , _

 ByVal overwrite As Boolean) As Boolean _

 Implements EViewsEdx.IDatabaseManager.CopyDb

Return True to indicate that your function has copied the database, False to indicate that it has not.

Note that for file-based databases there is a default implementation (when False is returned) that will

copy all files associated with the database format as reported by the EXT or EXTLIST attributes in

GetAttributes .

See the OpenDb function for a discussion of the databaseId , server , username and password

arguments.

Recommended Exceptions:

FILE_FILENAME_INVALID: if the file/database does not exist

FILE_PATHNAME_INVALID: if the path in a filename does not exist

FILE_FILENAME_IN_USE: if the file/database already exists and overwrite is False

SECURITY_LOGIN_INVALID: if a required username or password was missing or invalid

FOREIGN_SERVER_INVALID: if the server specification is invalid

IDatabaseManager.DeleteDB Method

Called by EViews when the user deletes an entire database (using Proc->Delete the Database or the

dbdelete command).

Syntax

Visual Basic (usage)

Public Function DeleteDb(ByVal databaseId As String , _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.DeleteDb

Return True to indicate that your function has deleted the database, False to indicate that it has not.

Note that for file-based databases there is a default implementation (when False is returned) that will

delete all files associated with the database format as reported by the EXT or EXTLIST attributes in

GetAttributes .

See the OpenDb function for a discussion of the databaseId , server , username and password

arguments.

Recommended Exceptions:

FILE_FILENAME_INVALID: if the file/database does not exist

FILE_PATHNAME_INVALID: if the path in a filename does not exist

SECURITY_LOGIN_INVALID: if a required username or password was missing or invalid

IDatabaseManager.GetAttributes Method

Called by EViews once per session when the Database Manager is initially loaded. The GetAttributes

function returns important characteristics of the database format to EViews so that it knows how to

interact with this database.

Syntax

Visual Basic (usage)

Public Function GetAttributes(ByVal clientInfo As String) As Object _

 Implements EViewsEdx.IDatabaseManager.GetAttributes

See Appendix B for a detailed list of attributes and a discussion of how to return them.

The clientInfo argument is a string describing the client program that created the manager. EViews

will currently always report its clientInfo as "EViews8 2014-09-09 (pid=18196)" (where 8 is the

current version number, "2014-09-09 is the build date, and pid= is the process id). This parameter can

safely be ignored for now: it is designed for future use.

IDatabaseManager.GetDatabaseIds Method

Called by EViews when the user tries to Browse the databases available from this database manager (for

example, in the Open Database dialog). This function is typically used by server-based databases to

provide a list of identifiers for databases available on the server (where the list may be filtered based on

the identity of the user). File-based databases generally do not implement this function, since they can

rely on the standard EViews file browsing interface instead.

Syntax

Visual Basic (usage)

Public Function GetDatabaseIds(ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As Object _

 Implements EVie wsEdx.IDatabaseManager.GetDatabaseIds

This function will only be called if the database manager has returned the "dbids" flags in

GetAttributes .

Database information can be returned to EViews in several formats: as a two dimensional array of

strings, as a two dimensional array of variants, or as a single string containing a table in "tsv" format

(tabs between fields, linefeeds between lines). The array should have the form:

Id1 parentId1 shortDescription1 longDescription1

Id2 parentId2 shortDescription2 longDescription2

Χ Χ Χ Χ

where the array contains one row for each available database.

Only the first column is required. A smaller number of columns can be returned when less descriptive

information is available.

The first column should contain the string which would need to be used as the databaseId argument

in OpenDb if the user wanted to open the database.

The second column, parentId , can be left blank unless you would like the set of database identifiers to

be displayed in a hierarchical tree. In this case, you should add extra rows to the array for any non-

terminal nodes in the tree and then use the parentId column to indicate the parent of each node. For

example, the array:

Root1

Abc Root1

Def Root1

Root2

Xyz Root2

will display as:

Note that the user will only be able to select terminal nodes as database identifiers.

IDatabaseManager.OpenDb Method

Called by EViews to open a new connection to the specified database. This method must return a

reference to an object that implements the IDatabase interface.

Syntax

Visual Basic (usage)

Public Function OpenDb(ByVal databaseId As String , _

 ByVal oc_mode As EViewsEdx.OpenCreateMode, _

 ByVal rw_mode As EViewsEdx.ReadWriteMode, _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As EViewsEdx.IDatabase _

 Implements EViewsEdx.IDatabaseManager.OpenDb

Databases can be divided into two broad categories: local file databases and client server databases. The

arguments to OpenDb have slightly different meanings depending on which case you are working with.

For file-based databases, the databaseId argument will typically be the full path for the file containing

the database. This argument should be sufficient to identify the database to be opened. The server

argument is not necessary in this case and can be ignored.

For server-based databases, a variety of information may be necessary to open a database depending on

the type of database that your manager supports. You can specify what information is required by your

database manager using the server , user , pass and dbid flags in the login attribute returned by

Get Attributes (see Appendix B for details). This determines which fields EViews will prompt the user

for when opening a database. For the most part, the meaning of these fields is defined entirely by the

specific database manager, but you may like to follow some common guidelines.

The server argument will typically contain whatever information is necessary to identify a specific

server that supports your database format. It will often be a URL, but it may be some other private form

of identifier. If there is only one server for your format, you may prefer to drop the server flag from

the login attribute and hard code all server information within your database extension so that the

user need not specify any server information when connecting to your database.

In a server-based system, the databaseId can be defined in any way that makes sense for the

database system being connected to. If there is only one namespace for all objects available on the

server, simply drop the dbid flag from the login attribute of the manager. This will prevent EViews

from prompting the user for a value for databaseId when opening the database.

When objects in the server are arranged into more than one namespace, the databaseId will typically

be used to indicate which namespace should be used by this connection. "Databases", "banks",

"catalogs", "subdirectories" and "tables" are all examples of terms that are sometimes used to describe

namespaces within a server. You should generally choose a definition of databaseId so that the names

of objects within a database will be as simple as possible. By specifying extra information within the

databaseId when the database is opened, a user may be able to use shorter object identifiers when

referring to particular objects within the database when working inside EViews.

Because databaseId can be used in many different ways, we allow you to change the label that is

displayed next to the field within EViews using the dbidlabel attribute. You can use this attribute to

re-label the field so that it appears more familiar to your users when working with your data. For

example, if server namespaces are typically referred to as "Banks" within your system, you may include

"dbidlabel=B ank " in your attributes to make the EViews interface more intuitive to your users.

The oc_mode and rw_mode specify how the database is to be opened. The values of oc_mode are:

FileOpen hǇŜƴ ŀƴ ŜȄƛǎǘƛƴƎ ŘŀǘŀōŀǎŜΣ ŜǊǊƻǊ ƛŦ ǘƘŜ ŘŀǘŀōŀǎŜ ŘƻŜǎƴΩǘ ŀƭǊŜŀŘȅ ŜȄƛǎǘ
FileCreate Create a new database, error if the database already exists
FileOpenCreate hǇŜƴ ŀƴ ŜȄƛǎǘƛƴƎ ŘŀǘŀōŀǎŜΣ ŎǊŜŀǘŜ ŀ ƴŜǿ ŘŀǘŀōŀǎŜ ƛŦ ǘƘŜ ŘŀǘŀōŀǎŜ ŘƻŜǎƴΩǘ ŜȄƛǎǘ
FileOverwrite Delete any existing database, then create a new empty database

The values of rw_mode are:

FileReadOnly The database is being opened for reading only. It will not be modified.
FileReadWrite The database is being opened for writing as well as reading.

You may use the nocreate and readonly flags in the database manager attributes to tell EViews that

your format does not support creating new databases or cannot open databases for writing. EViews will

never call your database manager with modes that you have indicated that you do not support. All

errors will be handled automatically by EViews.

Recommended Exceptions:

FILE_ACCESS_DENIED: if the file/database exists but the user does not have permission to access it

FILE_LOCK_UNAVAILABLE: if the file/database exists, but another user already has it open and is

preventing this user from accessing the file

FILE_FILENAME_INVALID: if the file/database does not exist

FILE_PATHNAME_INVALID: if the path in a filename does not exist

FILE_FILENAME_IN_USE: if the file/database already exists and EViews asked to create it

SECURITY_LOGIN_INVALID: if a required username or password was missing or invalid

FOREIGN_SERVER_INVALID: if the server specification is invalid

FOREIGN_CONFIGURATION_REQUIRED: if user preferences must be configured before any databases

can be opened (typically when the user first uses the database format)

IDatabaseManager.ProposeName Method

Called by EViews to give the Database Manager a chance to propose a new name for the specified object

in cases where the existing name is illegal in the destination format.

Syntax

Visual Basic (usage)

Public Function ProposeName(ByRef objectId As String , _

 ByVal destFormat As EviewsEdx.DbFormat, _

 ByVal dest Freq Info As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.ProposeName

By default, when an object with an illegal name is copied into an EViews workfile or database, any illegal

characters in the name will be replaced with underscores, and the user will be prompted (in interactive

mode) to confirm the change.

To change this behavior, simply modify the value of objectId to a new value. Return True if you

would like the user to be given a chance to confirm the proposed name change in interactive mode,

False if you would like the name change to be applied without a prompt.

The arguments destFormat and dest Freq Info provide information about the destination container

for the object. destFormat may contain the following values:

SameAsSelf Destination is this format (the object is being written to this format)
EViewsDatabase Destination is an EViews database (the object is being read from this format)

EViewsWorkfile Destination is an EViews workfile (the object is being read from this format)

The dest Freq Info argument is currently only used when the destination format is an EViews workfile.

It provides information about the frequency, start and end date of the workfile. This may be useful in

cases where the object identifier includes frequency information as part of the name and you would like

to suppress this when the destination frequency matches the source frequency. See

IDatabase::ReadObject for details on the format of the dest Freq Info string.

IDatabaseManager.RenameDb Method

Called by EViews to rename the specified database with a new name.

Syntax

Visual Basic (usage)

Public Function RenameDb(ByVal srcDatabaseId As String , _

 ByVal destDatabaseId As String , _

 ByVal server As String , _

 ByVal username As String , _

 ByVal password As String) As Boolean _

 Implements EViewsEdx.IDatabaseManager.RenameDb

Return True to indicate that your function has renamed the database, False to indicate that it has not.

Note that for file-based databases there is a default implementation (when False is returned) that will

rename all files associated with the database format as reported by the EXT or EXTLIST attributes in

GetAttributes .

See the OpenDb function for a discussion of the databaseId , server , username and password

arguments.

Recommended Exceptions:

FILE_FILENAME_INVALID: if the file/database does not exist

FILE_PATHNAME_INVALID: if the path in a filename does not exist

FILE_FILENAME_IN_USE: if the file/database already exists and EViews asked to create it

SECURITY_LOGIN_INVALID: if a required username or password was missing or invalid

FOREIGN_SERVER_INVALID: if the server specification is invalid

IDatabaseManager.SetPreferences Method

Gives the Database Manager a chance to restore itself to match preferences previously set by the user

during a call to ConfigurePreferences .

Syntax

Visual Basic (usage)

Public Sub SetPreferences(ByVal prefs As Stri ng) _

 Implements EViewsEdx.IDatabaseManager.SetPreferences

These preferences are stored as a single string in the EViews INI file and are passed to the Database

Manager immediately after the manager is constructed.

IDatabase
IDatabase is the main interface used by EViews to read and write data objects (e.g. series objects,

vectors and strings). It can also be used to copy, rename, and delete objects in the database.

Methods
BeginWrite Indicate that EViews is beginning a write operation
Close Release any resources held by the database
CopyObject Take a copy of an existing object
DeleteObject Delete an object
DoCommand Execute a custom command (reserved for future use)
EndWrite Indicates that EViews is ending a write operation
GetAttributes Get descriptive information about the database
GetCommandIds List custom commands (reserved for future use)
ListObject Attributes List the set of attributes available for objects in this database
ReadObject Read an object from the database, including data values
ReadObjectAttributes Read the attributes of an object in the database, without data values
ReadObjects Read multiple objects from the database
RenameObject Rename an object
SearchAbort Abort a search operation
SearchByAttributes Initialize a search by object attributes
SearchByBrowser Initialize a search with a custom browser GUI
SearchNext Return the next object from an already initialized search
SetAttributes Set descriptive information about the database
WriteObject Write an object to the database
WriteObjects Write multiple objects into the database

IDatabase.BeginWrite Method

Called by EViews to indicate the beginning of a write operation.

Syntax

Visual Basic (usage)

Public Sub BeginWrite(ByVal label As String) _

 Implements EViewsEdx.IDatabase.BeginWrite

This method is called at the beginning of a write operation that may or may not involve multiple calls to

WriteObject. label is currently reserved and not used. Can be used to improve the efficiency of

subsequent WriteObject calls.

IDatabase.Close Method

Called by EViews when it no longer needs this database to give the database a chance to release

resources.

Syntax

Visual Basic (usage)

Public Sub Close() Implements EViewsEdx.IDatabase.Close

EViews will not make any more calls to the Database class after calling Close . In garbage collected

environments (.NET), resources such as file handles should be released at this point to avoid resource

sharing violations that might be caused by delayed finalization of objects.

IDatabase.CopyObject Method

Called by EViews to make a copy of an existing object within the same database.

Syntax

Visual Basic (usage)

Public Sub CopyObject(ByVal srcObjectId As String , _

 ByRef destObjectId As String , _

 Optional ByVal overwrite As Boolean = False) _

 Implements EViewsEdx.IDatabase.CopyObject

This function will never be called if the database manager has returned the readonly attribute.

The overwrite flag indicates what should happen if there is an existing object with the name

destObjectId . If ov erwrite is True , the existing object should be deleted and the copy operation

should proceed. If overwrite is False , the function should throw a RECORD_NAME_IN_USE exception

to indicate that the copy operation could not proceed.

Note that if this function is not implemented, EViews will attempt to copy the object itself by calling

ReadObject followed by WriteObject .

Recommended Exceptions:

RECORD_NAME_ILLEGAL: if destObjectId is not a legal object name

RECORD_NAME_INVALID: if unable to find an object with name srcObjectId

RECORD_NAME_IN_USE: if existing object found with name destObjectId

IDatabase.DeleteObject Method

Called by EViews to delete an object within the database.

Syntax

Visual Basic (usage)

Public Sub DeleteObject(ByVal objectId As String) _

 Implements EViewsEdx.IDatabase.DeleteObject

This function will never be called if the database manager has returned the readonly attribute.

Recommended Exceptions:

RECORD_NAME_ILLEGAL: if objectId is not a legal object name

RECORD_NAME_INVALID: if unable to find an object with name objectId

IDatabase.DoCommand Method

Reserved for future use.

Syntax

Visual Basic (usage)

Public Function DoCommand(ByVal commandId As String , _

 ByVal args As Object) As Object _

 Implements EViewsEdx.IDatabase.DoCommand

This method is currently not in use.

IDatabase.EndWrite Method

9ƴŘ²ǊƛǘŜ ƳŜǘƘƻŘ ŘŜǎŎǊƛǇǘƛƻƴΧ

Syntax

Visual Basic (usage)

Public Sub EndWrite(ByVal reserved As Integer) _

 Implements EViewsEdx.IDatabase.EndWrite

EndWrite ƳŜǘƘƻŘ ƭƻƴƎ ŘŜǎŎǊƛǇǘƛƻƴΧ

IDatabase.GetAttributes Method

Called by EViews to obtain information about this particular database.

Syntax

Visual Basic (usage)

Public Function GetAttributes() As Object _

 Implements EViewsEdx.IDatabase.GetAttributes

There is currently only one database attribute that EViews uses which is the description attribute. If

a description string is returned, it will be displayed by EViews as part of the text of the View ->

Database Statistics view from the database window. Attributes are returned in the same way as for the

database manager and individual object attributes (see Appendix A for details).

IDatabase.GetCommandIds Method

Reserved for future use.

Syntax

Visual Basic (usage)

Public Function GetCommandIds() As Object _

 Implements EViewsEdx.IDatabase.GetCommandIds

This method is currently not in use.

IDatabase.ListObjectAttributes Method

Called by EViews to obtain a list of attributes available for the objects in this database.

Syntax

Visual Basic (usage)

Public Sub ListObjectAttributes(ByRef attributeList As String , _

 ByVal delim As String , _

 ByRef scanForAttributes As Boolean) _

 Implements EViewsEdx.IDatabase.ListObjectAttributes

This function can be used to notify EViews which attributes are present within objects in this database.

The names of the object attributes should be returned in attributeList separated by the delimiter

delim . The scanForAttributes flag is set by EViews on input to indicate whether object specific

attributes should be found by scanning the database. If the database has no object specific attributes, or

the function scans for these attributes itself, this argument should be set to False .

If this function is left empty, EViews will assume that the list of object attributes for this database is the

same as the standard list of EViews object attributes in Appendix C.

IDatabase.ReadObject Method

Called to retrieve the attributes, data values, and data identifiers for the specified object.

Syntax

Visual Basic (usage)

Public Sub ReadObject(ByVal objectId As String , _

 ByVal destFreqInfo As String , _

 ByRef attr As Object , _

 ByRef vals As Object , _

 ByRef ids As Object) _

 Implements EViewsEdx.IDatabase.ReadObject

EViews calls ReadObject whenever a user fetches an object from this database into an EViews workfile

or another database.

The objectId argument gives the name of the object to read as specified by the EViews user.

The destFreqInfo argument provides information about the frequency, start and end date when the

destination into which the object is being read is an EViews workfile. This can be used to choose data

values at the native frequency in systems where data for an object may exist in the database at more

than one frequency. The format of the string is the same as for the create command in EViews. See the

main EViews documentation for details.

The attr argument is used to return metadata about the object. See Appendix B for a discussion of

object attributes supported by EViews. If attr is not returned, it will be assumed that the object is a

series and that date information should be inferred from the ids argument (if available).

The vals argument is used for returning the data values of the object. The contents of the argument

will depend on the type of object being returned. For objects with numeric data (series, scalars, vectors,

matrices) the argument may be set to an array of numbers, dates, strings or variants all of which will be

converted to double precision values for used inside EViews. Missing values should be coded as NaNs

(use "NaN" as the value in .NET code). For objects with character data (alpha series, strings and svectors)

the arguments may be set to an array of strings, numbers, dates or variants all of which will be

converted to string values for use inside EViews.

The ids argument is optional and is provided for the case in which no metadata is available containing

frequency information or for the case where there are time gaps between the data values returned in

the vals array because the database does not include observations for missing data. In these cases, the

ids argument should be set to an array of date identifiers that match the data values so that EViews can

correctly align the data in time. The date identifiers can be provided as an array of COM/.NET date types

or as an array of strings that follow a standard EViews date format (eg. "1980Q3", "1980Q4",

"1981Q2"ΣΧύΦ 9±ƛŜǿǎ ŘƻŜǎ ƴƻǘ ŎǳǊǊŜƴǘƭȅ ǎǳǇport returning text identifiers for matching into undated

workfiles that have character id series.

Recommended Exceptions:

RECORD_NAME_ILLEGAL: if objectId is not a legal object name

RECORD_NAME_INVALID: if unable to find an object with name objectId

FOREIGN_TYPE_READ_UNSUPPORTED: the specified object exists, but cannot be returned to EViews

because the object type cannot be converted to an EViews data object

FOREIGN_FREQ_READ_UNSUPPORED: the specified object exists, but it has a frequency that cannot be

exported to EViews

FOREIGN_UNSUBSCRIBED_READ: the specified object exists, but this user does not have permission to

read the object (typically used for server-based systems where users must pay for access to particular

data series)

IDatabase.ReadObjectAttributes Method

Called to retrieve the attributes for the specified object.

Syntax

Visual Basic (usage)

Public Sub ReadObjectAttributes(ByVal objectId As String , _

 ByVal destFreqInfo As String , _

 ByRef attr As Object) _

 Implements EViewsEdx.IDatabase.ReadObjectAttributes

ReadObjectAttributes is similar to ReadObject but returns less information about the object. It is

called by EViews in situations where EViews needs to know some information about the object but does

not yet need the full set of data values (for example, in the first stage of exporting one or more series

from a database into a new workfile). ReadObjectAttributes should only be implemented if the

operation can be done more efficiently than reading the entire object. If ReadObjectAttributes is

not implemented, EViews will call ReadObject to retrieve the same information instead.

IDatabase.ReadObjects Method

Called to retrieve attributes, values, and ids for multiple objects specified all at once.

Syntax

Visual Basic (usage)

Public Sub ReadObjects(ByVal objectIds As Object , _

 ByVal destFreqInfo As String , _

 ByRef attr As Object , _

 ByRef vals As Object , _

 ByRef ids As Object) _

 Implements EViewsEdx.IDatabase.ReadObjects

This function is not currently used by EViews but is included for future use.

IDatabase.RenameObject Method

Called to rename an object in the database.

Syntax

Visual Basic (usage)

Public Sub RenameObject(ByVal srcObjectId As String , _

 ByVal destObjectId As String) _

 Implements EViewsEdx.IDatabase.RenameObject

This function will never be called if the database manager has returned the readonly attribute.

Note that if this function is not implemented, EViews will attempt to rename the object itself by calling

CopyObject followed by DeleteObject .

Recommended Exceptions:

RECORD_NAME_ILLEGAL: destObjectId is not a legal object name

RECORD_NAME_INVALID: unable to find an object with name srcObjectId

RECORD_NAME_IN_USE: existing object found with name destObjectId

IDatabase.SearchAbort Method

Called to cancel a search request.

Syntax

Visual Basic (usage)

Public Sub SearchAbort() Implements EViewsEdx.IDatabase.SearchAbort

Called by EViews when a user cancels an ongoing search operation by hitting the "Esc" key. Indicates

that EViews is finished with the current search operation and will not call SearchNext again without

first initializing a new search.

IDatabase.SearchByAttributes Method

Called to initialize a search across objects in the database to find ones that meet particular criteria.

Syntax

Visual Basic (usage)

Public Sub SearchByAttributes(ByVal searchExpression As String , _

 ByVal attrNames As String) _

 Implements EViewsEdx.IDatabase.SearchByAttributes

The SearchByAttributes function is the first function call in a sequence of function calls made by

EViews when the user performs an operation that requires searching across objects in the database. The

SearchByAttributes function initializes a new search. Results for the search are then returned one

at a time by repeated calls to SearchNext . EViews may call SearchAbort before reaching the end of

the results if the user has cancelled the search by hitting the escape key.

Searches will occur when the user explicitly requests a search from the database window (using the

"All", "Easy Query", or "Query" buttons on the database window). They will also occur implicitly in some

other cases such as when the user carries out a command that involves wildcard name patterns (eg.

"FETCH GDP*").

The searchExpression argument is used to tell the database which objects the user is looking for.

The contents of the argument will depend on the value of the SearchAttr attribute returned by the

database manager (see Appendix B). The default value of SearchAttr is "Name" in which case

searchExpression will contain the name pattern that should be matched against objectIds when

deciding which objects should be returned by SearchNext . (Note that name patterns may contain

wildcards "*" to match zero or more characters or "?" to match a single character). If searchAttr is

changed to include other attribute names, searchExpression will contain a list of matching values for

each field separated by the "| " character. You should only change the default searchAttr value if you

can efficiently filter objects in the database by fields other than name. This typically requires that indices

are available within the database to support fast searching on certain fields.

Note that EViews will always perform an additional filtering of all objects returned by a search to ensure

that they match the specified search criterion. This means that a database may return a larger set of

objects than what is strictly required and let EViews do the work of discarding any objects that do not

match the search criterion. In the most general case, the database can simply return every object in the

database on every search and leave everything else to EViews. This may be the best approach for small

to medium sized file-based databases where there may be little gain in efficiency in filtering the objects

outside of EViews.

The attrNames argument provides a list of the attributes that have been requested by the user to be

returned as part of the search. This argument is provided for efficiency reasons only. EViews will always

extract the particular fields requested by the user from the set of object attributes returned during

SearchNext , so you are always allowed to return a larger set of attributes than what was requested.

This parameter is included for cases where some object attributes may be retrieved much more cheaply

than others, in which case you may choose to use the attrNames argument to speed up the search

process.

IDatabase.SearchByBrowser Method

Called to display a custom database browser window that allows a user to navigate through the objects

within the database and select one or more objects.

Syntax

Visual Basic (usage)

Public Function SearchByBrowser(ByVal bro wserArgs As Object , _

 ByRef attrNames As String) As Object _

 Implements EViewsEdx.IDatabase.SearchByBrowser

EViews will only call this function if the database manager has declared that it supports a GUI browser

by setting the search attribute to include the value browser inside GetAttributes . In this case, the

EViews database window will include a toolbar button marked "Browse" which will call this function

whenever it is clicked.

Implementing a custom browser allows a richer user experience in cases where the database is

structured in a way that is not exploited by the standard EViews searching capabilities. For example, the

objects in the database may be arranged by categories such as country or industry, and users may prefer

to navigate through the database using a tree structure based on these attributes when they are

searching for a particular data series.

EViews supports two different implementations of a custom browser window: a blocking

implementation and a non-blocking implementation.

The blocking implementation is much simpler to implement. In a blocking implementation the database

extension simply displays a dialog or form containing the browser interface inside the

SearchByBrowser function and does not return from the function until the user has closed the dialog

or form. In this case, this function should return an empty object ("Nothing" in .NET). EViews will

immediately retrieve the items selected by the user by repeatedly called the SearchNext function.

The non-blocking implementation is considerably more complicated. In a non-blocking implementation,

the database extension creates an object that implements the browser interface inside the

SearchByBrowser function, but then immediately returns from the function before the browsing

operation is complete. Because control is returned to EViews, this implementation requires that a

conversation be established between EViews and the browser so that actions can be coordinated

between them. In this case, the SearchByBrowser function should return an object that implements

the interface EViewsEdx.IDatabaseBrowser and also supports the event source interface

EViewsEdx.IDatabaseBrowserEvents. These two interfaces provide two-way communication between

EViews and the external browser control. (See the documentation of these interfaces for details).

A non-blocking implementation may either display the control itself, or return an ActiveX control to

EViews. In the latter case, EViews will display the control within an MDI window. Note that a User

Control developed in .NET will generally support the necessary ActiveX interfaces for EViews to host the

control.

A custom browser window returns results to EViews through the same mechanism as

SearchByAttributes . EViews will make repeated calls to SearchNext retrieving results for a single

object with each call.

In the case of a non-blocking implementation (indicated by the function returning an object), EViews will

retrieve the results from the browser when the browser signals to EViews that it is ready by sending a

browser event such as AddSelected over the IDatabaseBrowserEvents event interface. See

documentation of the interface for a list of other events that the custom browser can send to EViews.

The browserArgs argument allows EViews to communicate information to the external browser on

launch. It is not currently used.

The attrNames argument is used to return the list of attributes that will be available for objects

selected by the user inside the browser control when browsing is complete. It should be set to contain a

comma separated list of object attribute names.

IDatabase.SearchNext Method

Called to return the next object found during a previously initialized search.

Syntax

Visual Basic (usage)

Public Function SearchNext(ByRef objectId As String , _

 ByRef attr As Object) As Boolean _

 Implements EViewsEdx.IDatabase.SearchNext

This function is called repeatedly by EViews to retrieve the results of a search operation initialized by a

call to SearchByAttributes or SearchByBrowser .

The function should return the name of the object matching the search criteria in objectId , and all

other attributes of the object in attr (see Appendix C for a discussion of object attributes).

See SearchByAttributes for a discussion of which objects should be returned by this function during a

search.

The function should return True if an object was found, False if there are no more objects to return.

IDatabase.SetAttributes Method

Called to adjust the attributes of a database.

Syntax

Visual Basic (usage)

Public Sub SetAttributes(ByVal attr As Object) _

 Implements EViewsEdx.IDatabase.SetAttributes

This function is not currently used.

IDatabase.WriteObject Method

Called to store an object into the database.

Syntax

Visual Basic (usage)

Public Sub WriteObject(ByRef objectId As String , _

 ByVal attr As Object , _

 ByVal vals As Object , _

 ByVal ids As Object , _

 ByVal overwriteMode As EViewsEdx.WriteType) _

 Implements EViewsEdx.IDatabase.WriteObject

This function will never be called if the database manager has returned the readonly attribute.

EViews will call WriteObject whenever a user copies an object from either an EViews workfile or

another database into this database.

WriteObject is the main function used to save data into an external database. The object to be saved

is sent to the function in several parts.

The objectId contains the name of the object. You should always check whether this name is legal

within your external database and throw a RECORD_NAME_ILLEGAL exception in cases where it is not.

This exception signals to EViews that it should give the user a chance to correct the name rather than

simply failing on the entire write operation.

The attr argument contains the set of attributes of the object being saved. See Appendix C for a

discussion of the format and contents of the object attributes.

The vals argument contains an array of data values associated with the object. Depending on the

object type these may take several forms. For objects with numeric data (series, scalars, vectors,

matrices) the vals argument will contain an array of double precision numbers. Missing values will be

coded as NaNs (use the Double.IsNan() function inside .NET to detect these). For objects with character

data (alpha series, strings and svectors) the vals argument will contain an array of strings.

The ids argument is available only when series objects are written. It provides an explicit date identifier

for each element of the vals array. The date identifier contains the beginning-of-period date for each

observation of the series. These date identifiers may be ignored in cases where the frequency, start and

end date of the series are stored explicitly within the database, but they may be useful in cases where

the only calendar information saved to the database is the set of observation dates.

overwriteMode is used to indicate what should be done in cases where there is already an existing

object with the identifier objectId . Currently, EViews will only call this function with two values for

overwriteMode :

WriteOverwrite Replace the existing object with the current object
WriteProtect 5ƻƴΩǘ ǊŜǇƭŀŎŜ ǘƘŜ ŜȄƛǎǘƛƴƎ ƻōƧŜŎǘ όǘƘǊƻǿ ŜȄŎŜǇǘƛƻƴ w9/hw5ψb!a9ψLbψ¦{9ύ

The additional values are provided for future extensions to EViews and can be ignored for now.

Recommended Exceptions:

RECORD_NAME_ILLEGAL: if objectId is not a legal object name

RECORD_NAME_IN_USE: if there is already an existing object with name objectId

FOREIGN_TYPE_WRITE_UNSUPPORTED: if the external database does not support writing of this type of

object

FOREIGN_FREQ_WRITE_UNSUPPORED: if the external database does not support writing an object with

this frequency

IDatabase.WriteObjects Method

²ǊƛǘŜhōƧŜŎǘǎ ƳŜǘƘƻŘ ŘŜǎŎǊƛǇǘƛƻƴΧ

Syntax

Visual Basic (usage)

Public Sub WriteObjects(ByRef errors As Object , _

 ByRef objectIds As Object , _

 ByVal attr As Object , _

 ByVal vals As Object , _

 ByVal ids As Object , _

 ByVal overwriteMode As EViewsEdx.WriteType) _

 Implements EViewsEdx.IDatabase.WriteObjects

²ǊƛǘŜhōƧŜŎǘǎ ƳŜǘƘƻŘ ƭƻƴƎ ŘŜǎŎǊƛǇǘƛƻƴΧ

IDatabaseBrowser
This interface is used to communicate user interface events within EViews to a custom browser control

implemented by the database extension.

This interface is used only when the database extension implements a custom browser, and the custom

browser is implemented as a non-blocking control. See IDatabase::SearchByBrowser for a discussion.

Methods
EViewsEvent Notify the browser of an EViews GUI Event

IDatabaseBrowser.EViewsEvent Method

Called by EViews to notify a custom database browser of an EViews GUI event.

The following events are currently sent to the browser by EViews

MessageId Description

Activate Indicate that the custom browser should prepare for user interaction (only sent to
the browser if it is not hosted by EViews)

Exit Indicate that the custom browser should close itself

Syntax

Visual Basic (usage)

Public Function EViewsEvent(ByVal id As EViewsEdx.MessageId, _

 ByVal commandArgs As Object) As Object _

 Implements EViewsEdx.IDatabaseBrowser.EViewsEvent

IDatabaseBrowserEvents
This interface is used to communicate user interface events that occur within a custom browser control

to EViews. This interface is used only when the database extension implements a custom browser, and

the custom browser is implemented as a non-blocking control. See IDatabase::SearchByBrowser for a

discussion.

A custom browser control can use the browser events interface to perform operations that would

normally be carried out by the user within the EViews database window. Examples include copy and

paste or drag and drop of a series within the database into an EViews workfile window. The custom

browser may also use the events interface to hide the main EViews database window so that it becomes

the primary user interface for the database.

Using the IDatabaseBrowserEvents class within a .NET project requires the following steps:

1) Set the ComSourceInterfaces attribute of your custom browser class to notify .NET that your

browser class will generate database browser events

2) Declare the event you are going to raise

3) Use the RaiseEvent statement to notify EViews that an event has occurred.

The following VB .NET code fragment contains a typical example of how this might look. The example

implements a function SendMessage that may be called to notify EViews of an event.

<ClassInterface(ClassInterfaceType.None), _

 ComSourceInterfaces(GetTyp e(EViewsEdx. IDatabaseBrowserEvents)), _

 ComVisible(True)> _

Public Class MyCategoryBrowserControl

 Implements EViewsEdx. IDatabaseBrowser

 'declare event used to send messages to EViews

 Public Event BrowserEvent(ByVal commandId As EViewsEdx. MessageId , ByVal

commandArgs As Object , ByRef Result As Object)

 'actual function that sends a message to EViews

 Private Function SendMessage(ByVal commandId As EViewsEdx. MessageId ,

Optional ByVal commandArgs As Object = Nothing) As Object

 Dim eventResult As Object = Nothing

 RaiseEvent BrowserEvent(commandId, commandArgs, eventResult)

 Return eventResult

 End Function

End Class

If you are using .NET Framework 4.0 or later, you may experience problems where the .NET Framework

does not appear to send raised events to EViews. It is not clear why this problem occurs but it seems to

be related to the fact that the event interface is declared within a type library built within a native code

project. If you experience this behavior, please add an additional reference to the library

EViewsEdxNet.dll to your project and then refer to EViewsEdxNet.IDatabaseBrowserEvents instead of

EViewsEdx.IDatabaseBrowserEvents when setting the ComSourceInterfaces attribute. (The

EViewsEdxNet type library exports exactly the same interface as the EViewsEdx type library but from

within a .NET project instead of a native code project).

Methods
BrowserEvent Notify EViews of a custom browser GUI Event

IDatabaseBrowserEvents.BrowserEvent Event

Raised by a custom database browser to notify EViews of browser GUI events.

Syntax

Visual Basic (usage)

Public Event BrowserEvent(ByVal id As EViewsEdx.MessageId, _

 ByVal commandArgs As Object , _

 ByRef result As Object) _

The following event notifications may be sent to EViews

MessageId Description

ClearExisting Instructs EViews to clear out the current contents of the EViews database
window

AddSelected Asks EViews to add the items selected in the browser to the EViews database
window. EViews will retrieve the selected items by repeatedly calling the
SearchNext function on the associated database object.

CopySelected Asks EViews to add the items selected in the browser to the EViews database
window and copy them to the clipboard so they may be pasted into an EViews
workfile or database. EViews will retrieve the items to copy by repeatedly calling
the SearchNext function on the associated database object.

DragSelected Asks EViews to add the items selected in the browser window to the EViews
database window and return data that is required to perform a drag and drop
operation of the items within EViews. EViews will retrieve the items to drag by
repeatedly calling the SearchNext function on the associated database object.
The byte array returned by EViews in the result argument should be wrapped
into a MemoryStream and placed into a data object using the custom format
"EViewsEdxBrowserSelection". Pass this data object to the DoDragDrop()

