Name | Function | Examples/Description |
@abs(x), abs(x) | absolute value | @abs(-3)=3. |
@bounds(x,y,z) | boundary values | returns ![]() ![]() ![]() ![]() ![]() ![]() |
@ceiling(x[,n]) | smallest integer not less than | @ceiling(2.34)=3, @ceiling(4)=4. |
@exp(x), exp(x) | exponential, ![]() | @exp(1)=2.71813. |
@expm1(x) | exponential, ![]() | For x near zero. |
@fact(x) | factorial, ![]() | @fact(3)=6, @fact(0)=1. |
@factlog(x) | natural logarithm of the factorial, ![]() | @factlog(3)=1.79176, @factlog(0)=0. |
@floor(x[,n]) | largest integer not greater than | @floor(1.23)=1, @floor(-3.1)=-4. |
@iff(s,x,y) | recode by condition | returns ![]() ![]() ![]() |
@inv(x) | reciprocal, ![]() | inv(2)=0.5 (For series only; you should use
@einv to obtain the element inverse of a matrix). |
@mod(x,y) | floating point remainder | returns the remainder of ![]() ![]() ![]() |
@log(x), log(x) | natural logarithm, ![]() | @log(2)=0.693..., log(@exp(1))=1. |
@log1p(x) | ![]() | For ![]() |
@log1mexp(x) | ![]() | For negative ![]() |
@log10(x) | base-10 logarithm, ![]() | @log10(100)=2. |
@logx(x,b) | base-b logarithm, ![]() | @logx(256,2)=8. |
@nan(x,y) | recode NAs in X to Y | returns ![]() ![]() ![]() ![]() |
@pmax(x,y) | pairwise max | returns the pairwise max of ![]() ![]() |
@pmin(x,y) | pairwise min | returns the pairwise max of ![]() ![]() |
@pow(x,a) | power, ![]() | @pow(2,3) = 8. |
@powm1(x,a) | ![]() | For ![]() |
@pow1pm1(x,a) | ![]() | For ![]() ![]() ![]() ![]() ![]() |
@recode(s,x,y) | recode by condition | returns ![]() ![]() ![]() |
@round(x[,n]) | round to the nearest integer | @round(-97.5)=-98, @round(3.5)=4. |
@sign(x) | returns sign of ![]() | returns -1, 0, 1 depending on the sign of the corresponding element of ![]() |
@sqrt(x), sqr(x) | square root | @sqrt(9)=3. |