Function | Description |
@beta(a,b) | beta integral (Euler integral of the second kind): ![]() for ![]() |
@betainc(x,a,b[,n]) | incomplete beta integral: ![]() for ![]() ![]() |
@betaincder(x,a,b,s) | derivative of the incomplete beta integral: evaluates the derivatives of the incomplete beta integral ![]() ![]() ![]() |
@betaincinv(p,a,b) | inverse of the incomplete beta integral: returns an ![]() ![]() for ![]() ![]() |
@betalog(a,b) | natural logarithm of the beta integral: ![]() |
@binom(n,x) | binomial coefficient: ![]() for ![]() ![]() ![]() |
@binomlog(n,x) | natural logarithm of the binomial coefficient: ![]() |
@cloglog(x) | complementary log-log function: ![]() See also @qextreme. |
@digamma(x), @psi(x) | first derivative of the log gamma function: ![]() |
@erf(x) | error function: ![]() for ![]() |
@erfc(x) | complementary error function: ![]() for ![]() |
@gamma(x) | (complete) gamma function: ![]() for ![]() |
@gammader(x) | first derivative of the gamma function: ![]() Note: Euler’s constant, ![]() ![]() |
@gammainc(x,a[,n]) | incomplete gamma function: ![]() for ![]() ![]() |
@gammaincder(x,a,n) | derivative of the incomplete gamma function: Evaluates the derivatives of the incomplete gamma integral ![]() ![]() ![]() |
@gammaincinv(p,a) | inverse of the incomplete gamma function: find the value of ![]() ![]() for ![]() ![]() |
@gammalog(x) | logarithm of the gamma function: ![]() |
@logit(x) | logistic transform: ![]() |
@psi(x) | see @digamma. |
@trigamma(x) | second derivative of the log gamma function: ![]() |